A series of weekly lectures to introduce students to chemical and biomolecular engineering and its role as a profession in addressing contemporary technological, social, ethical, and economic issues in today’s world. The lectures will include examples of how chemical and biomolecular engineers apply the principles of physics and chemistry to develop new products, improve process efficiencies, and alleviate the strain on the ecosystem through the design of novel environmentally conscious processes. In addition, the lectures will highlight exciting new areas now being advanced by chemical and biomolecular engineers, such as biochemical engineering, tissue engineering, nanoparticle fabrication, and processing smart polymers for applications in computer technology and as sensors. Freshmen Only.
Area: Engineering
Introduction to chemical and biomolecular engineering and the fundamental principles of chemical process analysis. Formulation and solution of material and energy balances on chemical processes. Reductionist approaches to the solution of complex, multi-unit processes will be emphasized. Introduction to the basic concepts of thermodynamics as well as chemical and biochemical reactions.
Prerequisite(s): (AS.030.101 OR AS.030.103) AND ( AS.171.101 OR AS.171.107 ) AND ( AS.030.102 OR AS.030.103 OR AS.110.109 OR AS.171.102 )
Area: Engineering
Formulation and solution of material, energy, and entropy balances with an emphasis on open systems. A systematic problem-solving approach is developed for chemical and biomolecular process-related systems. Extensive use is made of classical thermodynamic relationships and constitutive equations for one and two component systems. Applications include the analysis and design of engines, refrigerators, heat pumps, compressors, and turbines.
Prerequisite(s): AS.110.202;EN.540.202
Area: Engineering
The courses EN.540.290, 291, 390, and 391 guide the students through the open-ended problems in product and process design. Product design concerns the recognition of customer needs, the creation of suitable specifications, and the creation of new products to fulfill a societal need. Process design concerns the quantitative description of processes which serve to produce chemically-derived materials and the estimation of process profitability. Students work in small teams to complete a major project demonstrating their understanding of and proficiency in the principles of unit operations and design. Students report weekly both orally and in writing on their accomplishments. Some projects are single semester, but others can be multi-semester. Students can start in any semester and can work on projects for as many semesters as they want.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering
Review of numerical methods applied to kinetic phenomena and reactor design in chemical and biological processes. Homogeneous kinetics and interpretation of reaction rate data. Batch, plug flow, and stirred tank reactor analyses, including reactors in parallel and in series. Selectivity and optimization considerations in multiple reaction systems. Non isothermal reactors. Elements of heterogeneous kinetics, including adsorption isotherms and heterogeneous catalysis. Coupled transport and chemical/biological reaction rates.
Prerequisite(s): EN.540.203 AND EN.540.303
Area: Engineering
Molecular mechanisms of momentum transport (viscous flow), energy transport (heat conduction),and mass transport (diffusion). Isothermal equations of change (continuity, motion, and energy). The development of the Navier Stokes equation. The development of non isothermal and multi component equations of change for heat and mass transfer. Exact solutions to steady state, isothermal unidirectional flow problems, to steady state heat and mass transfer problems. The analogies between heat, mass, and momentum transfer are emphasized throughout the course. Co-requisite: AS.110.302
Prerequisite(s): AS.110.302 OR EN.553.291
Area: Engineering
Dimensional analysis and dimensionless groups. Laminar boundary layers, introduction to turbulent flow. Definition of the friction factor. Macroscopic mass, momentum and mechanical energy balances (Bernouilli’s equation). Metering of fluids. Convective heat and mass transfer. Heat and mass transfer in boundary layers. Correlations for convective heat and mass transfer. Boiling and condensation. Interphase mass transfer.
Prerequisite(s): EN.540.303 AND (EN.500.113 OR EN.500.133)
Area: Engineering
This course covers staged and continuous-contacting separations processes critical to the chemical and biochemical industries. Separations technologies studied include distillation, liquid-liquid extraction, gas absorption, membrane ultrafiltration, reverse osmosis, dialysis, adsorption, and chromatography. Particular emphasis is placed on the biochemical uses of these processes and consequently on how the treatment of these processes differs from the more traditional approach.
Prerequisite(s): EN.540.203 AND EN.540.303 AND (EN.500.113 OR EN.500.133);Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering
This course explores fundamental structural details and molecular functions of different parts of the cell. Considerable emphasis is placed on experimental/quantitative approaches to answering these questions. Topics include Central dogma and the nucleus; protein trafficking; ion transporters; cytoskeleton; molecular motors; cell cycle and cell division; signal transduction, cell growth and cancer; cell death, the extracellular matrix; cell adhesion, cell junctions and epithelium; and muscle contraction, cell motility and morphogenesis.
Prerequisite(s): Cell Biology restriction: students who have completed AS.020.306 may not enroll.;AS.020.305
Area: Natural Sciences
This course guides the student through the steps of product design. Product design concerns the recognition of customer needs, the creation of suitable specifications, and the selection of best products to fulfill the needs. Students work in small teams to complete a major project demonstrating their understanding of and proficiency in the primary objectives of the course. Students report several times both orally and in writing on their accomplishments. This course is the first part of a two-semester sequence that optionally can be taken instead of EN.540.314 Chemical and Bimolecular Engineering Product Design. The material covered is the same as in EN.540.314, but more time is allowed so that laboratory tests can be performed and/or prototypes can be made. Note that students must take 540.310 to complete this sequence andbefore receiving credits for 540.309.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.;EN.540.303 AND EN.540.490;EN.540.306 AND EN.540.301
Area: Engineering
This course is the second part of a two semester sequence (with EN.540.309) that optionally can be taken instead of EN.540.314 Chemical and Biomolecular Engineering Product Design. Students continue to work with their team on their product design project. Students report several times both orally and in writing on their accomplishments. The material covered is the same as in EN.540.314, but more time is allowed so that laboratory tests can be performed and/or prototypes can be made. Note that both courses, EN.540.309 and EN.540.310 must be taken to satisfy the Undergraduate degree requirement of the Chemical and Biomolecular Engineering program. The two courses can be started in any term. Recommended Course Background: EN.540.301, EN.540.304, EN.540.311 or EN.540.313 or permission of instructor.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.;EN.540.309
Area: Engineering
This course challenges students with laboratory projects that are not well-defined. Students work in groups to develop an effective approach to experiments. They identify the important operating variables, decide how best to obtain them using measured or calculated values. Based on their results they predict, carryout, analyze and improve experiments. Each student analyzes three of the following projects: distillation, gas absorption, and one of the projects in EN.540.313. In addition to technical objectives, this course stresses oral and written communication.In addition to technical objectives, this course stresses oral and written communication. Students will have additional meeting times with the instructors and outside of class.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.;EN.540.301 AND EN.540.304 AND EN.540.306 AND EN.661.315;EN.540.490 can be taken concurrently with EN.540.311
Area: Engineering
Writing Intensive
This course challenges students with laboratory projects that are not well-defined. Students work in groups to develop an effective approach to experiments. They identify the important operating variables, decide how best to obtain them using measured or calculated values. Based on their results they predict, carryout, analyze and improve experiments. Each student analyzes at least two of the following biomolecular projects: bioreactor, biocatalysis and membrane separation and one of the projects in EN.540.311. In addition to technical objectives, this course stresses oral and written communication. In addition to technical objectives, this course stresses oral and written communication. Students will have additional meeting times with the instructors and outside of class.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.;EN.540.301 AND EN.540.304 AND EN.540.306 AND EN.661.315;EN.540.490 can be taken concurrently with EN.540.313
Area: Engineering
Writing Intensive
This course guides the student through the steps of a project in product design. Product design concerns the recognition of customer needs, the creation of suitable specifications, and the selection of best products to fulfill the needs. It includes the design of a manufacturing process for the product and an estimation of the economic profitability of the concept. Students work in small teams to complete a major project demonstrating their understanding of and proficiency in the primary objectives of the course. Students report several times both orally and in writing on their accomplishments.
Prerequisite(s): EN.540.306 AND EN.540.301;EN.540.303;EN.540.490
Area: Engineering
The course guides the students through process design where they study the production of a chemical compound. They select a preferred process and create a flowsheet of the production process. They use Aspen simulation to evaluate the major unit operations of their process. They will carry out a hazard operations analysis on the process and perform an economic analysis when appropriate. Students work in small teams to complete their project and write a report on their work and conclusions.
Prerequisite(s): EN.540.306 AND EN.540.301;EN.540.303;EN.540.490
Area: Engineering
The course introduces several statistical methods, used to analyze and extract useful information from data. Topics covered include descriptive statistics, basic probability theory, error analysis, confidence intervals, hypothesis testing, regression, design of experiments and an introduction to Bayesian Statistics. Students will also learn to perform statistical analysis of data using Python libraries.
Prerequisite(s): (EN.500.113 OR EN.500.133) AND AS.110.202
Area: Engineering, Quantitative and Mathematical Sciences
The aim of this course is to provide a fundamental understanding of the quantitative principles and methodologies of systems biology and biochemical engineering of metabolism. This includes concepts of cellular growth, cellular stoichiometric models, metabolic networks, metabolite fluxes, and genome-scale metabolic models. Quantitative methods and systems biology approaches for metabolic flux analysis and metabolic control theory will be included as well as an analysis of biochemical systems and bioreactors including a consideration of mass transport processes.
Prerequisite(s): AS.020.306 OR ( EN.580.440 OR EN.580.441 ) OR EN.540.307
Area: Engineering
Fundamental principles related to interactions, dynamics, and structure in colloidal, nanoparticle, and interfacial systems. Concepts covered include hdrodynamics, Brownian motion, diffusion, sedimentation, electrophoresis, colloidal and surface forces, polymeric forces, aggregation, deposition, and experimental methods. Modern topics related to colloids in nano- science and technology will be discussed throughout the course with frequent references to recent literature. Meets with EN.540.603
Area: Engineering, Natural Sciences
This class will provide an introduction for chemical and biomolecular engineering students to modern methods of measuring and testing hypotheses using experimental or computational data. The course will cover methods of regression and data analysis such as linear and nonlinear regression, Bayesian analysis and principal or independent component analysis. The course will introduce concepts of machine learning including linear and nonlinear separation, neural networks, Gaussian processes and will provide exposure to deep learning concepts. The course will focus generally on image data and will consider topics of image processing, feature extraction and will cover for general data dimensionality reduction. Familiarity with computer programming (ideally Python), statistics and linear algebra are prerequisites.
Area: Engineering
This course will discuss the recent progress of renewable energy technologies, emphasizing a perspective from chemical engineering. Engineering principles in terms of mass and energy balance, phase equilibrium, kinetics and catalysis, transport, etc. will be applied to analyze the performance of new energy conversion and storage technologies. Topics of interest include solar cells, fuel cells, batteries and biofuels.
Prerequisite(s): EN.540.203 AND EN.540.303 AND EN.540.301
Area: Engineering
Introduction to modeling, dynamics, and control. Unsteady state analysis of biomolecular and chemical process control systems. State space and Laplace transform techniques, block diagram algebra, and transfer functions. Feedback and feedforward control. Frequency response and stability analysis. Applications in chemical engineering (chemical reactors and separative processes) as well as biomolecular engineering (biosynthesis, pharmacokinetic modeling and biomolecular modeling based upon central dogma/gene expression). Introduction to nonlinear dynamics.
Prerequisite(s): EN.540.301 AND EN.540.306
Area: Engineering, Quantitative and Mathematical Sciences
This class will introduce the fundamental concepts in protein structure, biophysics, optimization and informatics that have enabled the breakthroughs in computational structure prediction and design. Problems covered will include protein folding and docking, design of ligand-binding sites, design of turns and folds, design of protein interfaces. Class will consist of lectures and hands-on computer workshops. Students will learn to use molecular visualization tools and write programs with the PyRosetta protein structure software suite, including a computational project. Programming experience is recommended.
Area: Engineering
Nanostructured materials intrinsically possess large surface area (interface area) to volume ratios. It is this large interfacial area that gives rise to many of the amazing properties and technologies associated with nanotechnology. In this class we will examine how the properties of surfaces, interfaces, and nanoscale features differ from their macroscopic behavior. We will compare and contrast fluid-fluid interfaces with solid-fluid and solid-solid interfaces, discussing fundamental interfacial physics and chemistry, as well as touching on state-of-the-art technologies.
Area: Engineering
Ready to put those concepts from class into practice? Members work over the course of the semester to design and build a chemically powered vehicle that will compete with other college teams at the American Institute of Chemical Engineers ( AIChE) Regional Conference. In this course, the students work in small groups to design and construct the chassis along with chemically powered propulsion and break mechanisms within the constraints of the competition. In addition, students will give oral presentation, write reports, and do thorough safety analysis of their prototypes. Both semesters (EN.540.418 and EN.540.419) must be completed with passing grades to receive credit. This course may be repeated.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering
Ready to put those concepts from class into practice? Members work over the course ofthe semester to design and build a chemically powered vehicle that will compete with other college teams at the American Institute of Chemical Engineers ( AIChE) Regional Conference. In this course, the students work in small groups to design and construct the chassis along with chemically powered propulsion and break mechanisms within the constraints of the competition. In addition, students will give oral presentation, write reports, and do thorough safety analysis of their prototypes. Both semesters (EN.540.418 and EN.540.419) must be completed with passing grades to receive credit.
Area: Engineering
This is continuation of 540.400 Project in Design: Pharmacokinetics. It is a design course in which the design projects will be to develop pharmacodynamic models of the human body that can be used to understand the physiologic effects of drugs on the body. The course (and software to be developed) will cover the spectrum of ways in which pharmaceuticals affect human physiology. The goal is to develop process models of the human body that will predict pharmaceutical effects as a function of time and organ (or cell) type that will work for a wide variety of pharmaceuticals including small molecules, biologics, and chemotherapy agents. This course is organized to replicate group project work as it is practiced in industry. The class is divided into groups (typically 3 or 4 students) and each group will meet separately each week with the instructor. Hence, there is no regularly scheduled class times; student groups sign up for weekly meeting times using Starfish in Blackboard. These meetings typically will be 90 minutes long. The expectations and assignments for this course are quite different from most other courses. There are no weekly lectures by the instructor. Rather, each week each group will make a PowerPoint presentation on the week's topic or their progress on their project.Prerequisites540.421 has a prerequisite of 540.400 Pharmacokinetics
Prerequisite(s): EN.540.432
Area: Engineering, Natural Sciences
Polymeric materials are ubiquitous in our society from Nature-made proteins and polysaccharides to synthetic plastics and fibers. Their applications range from day-to-day consumables to high performance materials used in critically demanding areas, such as aviation, aerospace and medical devices. The objective of this course is to provide an introductory overview on the field of polymer science and engineering. Students will learn some basic concepts in polymer synthesis, characterization, and processing. With the basic concepts established, industrial applications of polymeric materials will be discussed in two categories: structural polymers and functional polymers. Structural polymers, including plastics, fibers, rubbers, coatings, adhesives, and composites, will be discussed in terms of their structure, processing, and property relationship with a flavor of industrial relevant products and applications. Future trends in developing environmentally friendly polymers from renewable resources (“green polymer chemistry”) will also be covered. Lectures on functional polymers will be focused on their unique properties that are enabled by rational molecular design, controlled synthesis and processing (e.g. supramolecular assembly, and microfabrication). This class of specialty materials can find their use in high performance photovoltaics, batteries, membranes, and composites, and can also serve as “smart” materials for use in coatings, sensors, medical devices, and biomimicry.
Area: Engineering
This is a design course in which the design projects will be to develop pharmacokinetic models of the human body that can be used to understand the temporal distribution, spatial distribution and bioavailability of pharmaceutical drugs. The course (and software to be developed) will cover the spectrum of factors affecting pharmaceutical bioavailability including drug formulation, mode of dosing and dosing rate, metabolism and metabolic cascades, storage in fatty tissues, and diffusional limitations (such as in crossing the blood-brain barrier or diffusional differences between normal and cancerous cells). The goal is to develop process models of the human body that will predict pharmaceutical bioavailability as a function of time and organ (or cell) type that will work for a wide variety of pharmaceuticals including small molecules, biologics, and chemotherapy agents. This course is organized to replicate group project work as it is practiced in industry. The class is divided into groups (typically 3 or 4 students) and each group will meet separately each week with the instructor. Hence, there is no regularly scheduled class times; student groups sign up for weekly meeting times using Starfish in Blackboard. These meetings typically will be 90 minutes long. The expectations and assignments for this course are quite different from most other courses. There are no weekly lectures by the instructor. Rather, each week each group will make a PowerPoint presentation on the week's topic or their progress on their project.
Area: Engineering, Natural Sciences
The field of micro / nanotechnology has been gaining tremendous momentum as evidenced by an explosive rise in the number of publications, patents and commercial activities. This is an introductory course intended to expose students to the field as well as real world applications. Lectures will include an overview of scaling of material properties at the nanoscale, micro and nanofabrication methods and essential analytical tools of relevance to the field. All through the course, we will go over electronic, optical and biological applications of emerging micro and nanoscale devices and materials. Co-listed with EN.540.640.Only Undergraduate Seniors and Graduate students may join the course.
Area: Engineering
This is a course about how the food we eat affects our health. In particular, the major non-communicable illnesses all are caused by the food we eat causing metabolic dysfunction and metabolic diseases. Currently 70% of the people in the US have metabolic dysfunction and over 50% of us will die from a non-communicable metabolic disease. This course also is about how food companies addict us to eat certain foods and why these addictive foods lead to metabolic dysfunction.
Area: Engineering, Natural Sciences
Fundamental concepts in drug delivery from an engineering perspective. Biological organisms are viewed as highly interconnected networks where the surfaces/interfaces can be activated or altered ‘chemically’ and ‘physically/mechanically’. The importance of intermolecular and interfacial interactions on drug delivery carriers is the focal point of this course. Topics include: drug delivery mechanisms (passive, targeted); therapeutic modalities and mechanisms of action; engineering principles of controlled release and quantitative understanding of drug transport (diffusion, convection); effects of electrostatics, macromolecular conformation, and molecular dynamics on interfacial interactions; thermodynamic principles of self-assembly; chemical and physical characteristics of delivery molecules and assemblies (polymer based, lipid based); significance of biodistributions and pharmacokinetic models; toxicity issues and immune responses.
Prerequisite(s): Students may take EN.540.465 or EN.540.665, but not both.;EN.540.303
Area: Engineering, Natural Sciences
An introduction to the phenomenology of nonlinear dynamic behavior with emphasis on models of actual physical, chemical, and biological systems, involving an interdisciplinary approach to ideas from mathematics, computing, and modeling. The common features of the development of chaotic behavior in both mathematical models and experimental studies are stressed, and the use of modern data-mining tools to analyze dynamic data will be explored. Knowledge of Linear Algebra and Ordinary Differential Equations is a prerequisite (at an undergraduate level); Some computing experience is desirable. Emphasis will be placed on the geometric/visual computer-aided description and understanding of dynamics and chaos.
Prerequisite(s): ((AS.110.201 OR AS.110.212) AND (AS.110.302 OR AS.110.306)) OR EN.553.291;Students may receive credit for only one of EN.553.473 OR EN.553.673 OR EN.540.468 OR EN.540.668.
Area: Engineering, Quantitative and Mathematical Sciences
This course covers topics in chemical process safety. Chemical process safety concerns itself with discovery, analysis, and control of risks arising from chemical processes. Starting with the definition of risk and ethical principles that apply to safety-critical situations, we will progress to several types of hazard analysis, discussion of the safety implications of construction materials, incident investigation, fire, toxicity, and the technique called Inherently Safer Design).
Prerequisite(s): EN.540.203 AND EN.540.303;Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Intership unpaid and approved by ChemBE faculty.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Students do individual projects (or in collaboration with faculty and/or graduate students) in areas basic to chemical engineering. This section has weekly research group meeting that students are expected to attend.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Lectures are presented on current subjects relevant to chemical engineering. Attendance at 80% of departmental seminars is required to receive credit for this class.
Area: Engineering
Lectures are presented on current subjects relevant to chemical engineering. Attendance at 80% of departmental seminars is required to receive credit for this class.
Area: Engineering
The aim of this course is to provide a fundamental understanding of the quantitative principles and methodologies of systems biology and biochemical engineering of metabolism. This includes concepts of cellular growth, cellular stoichiometric models, metabolic networks, metabolite fluxes, and genome-scale metabolic models. Quantitative methods and systems biology approaches for metabolic flux analysis and metabolic control theory will be included as well as an analysis of biochemical systems and bioreactors including a consideration of mass transport processes.
Area: Engineering
Fundamental principles related to interactions, dynamics, and structure in colloidal, nanoparticle, and interfacial systems. Concepts covered include hdrodynamics, Brownian motion, diffusion, sedimentation, electrophoresis, colloidal and surface forces, polymeric forces, aggregation, deposition, and experimental methods. Modern topics related to colloids in nano- science and technology will be discussed throughout the course with frequent references to recent literature. Meets with EN.540.403
Area: Engineering
Required course for ChemBE Masters students
Area: Engineering, Quantitative and Mathematical Sciences
This class will provide an introduction for chemical and biomolecular engineering students to modern methods of measuring and testing hypotheses using experimental or computational data. The course will cover methods of regression and data analysis such as linear and nonlinear regression, Bayesian analysis and principal or independent component analysis. The course will introduce concepts of machine learning including linear and nonlinear separation, neural networks, Gaussian processes and will provide exposure to deep learning concepts. The course will focus generally on image data and will consider topics of image processing, feature extraction and will cover for general data dimensionality reduction. Familiarity with computer programming (ideally Python), statistics and linear algebra are prerequisites.
Area: Engineering
This course will discuss the recent progress of renewable energy technologies, emphasizing a perspective from chemical engineering. Engineering principles in terms of mass and energy balance, phase equilibrium, kinetics and catalysis, transport, etc. will be applied to analyze the performance of new energy conversion and storage technologies. Topics of interest include solar cells, fuel cells, batteries and biofuels.
Area: Engineering
This class will introduce the fundamental concepts in protein structure, biophysics, optimization and informatics that have enabled the breakthroughs in computational structure prediction and design. Problems covered will include protein folding and docking, design of ligand-binding sites, design of turns and folds, design of protein interfaces. Class will consist of lectures and hands-on computer workshops. Students will learn to use molecular visualization tools and write programs with the PyRosetta protein structure software suite, including a computational project. Programming experience is recommended.
Area: Engineering
Nanostructured materials intrinsically possess large surface area (interface area) to volume ratios. It is this large interfacial area that gives rise to many of the amazing properties and technologies associated with nanotechnology. In this class we will examine how the properties of surfaces, interfaces, and nanoscale features differ from their macroscopic behavior. We will compare and contrast fluid-fluid interfaces with solid-fluid and solid-solid interfaces, discussing fundamental interfacial physics and chemistry, as well as touching on state-of-the-art technologies.
Area: Engineering
This course will cover the principles of metabolism in cellular, organismal, and systemic levels and the mechanisms of how metabolic dysfunctions are associated with diseases, including diabetes and cancer. The topics will include but are not limited to the Warburg effect, signaling and metabolism, metabolic crosstalk, metabolic targets for cancer therapy, and state-of-the-art techniques for metabolic analyses. Students must have an understanding of undergraduate-level biochemistry. The grade will be based on attendance, participation in the discussions, and presentations.
Prerequisite(s): EN.540.402 OR EN.540.602
Area: Engineering
This is continuation of 540.400 Project in Design: Pharmacokinetics. It is a design course in which the design projects will be to develop pharmacodynamic models of the human body that can be used to understand the physiologic effects of drugs on the body. The course (and software to be developed) will cover the spectrum of ways in which pharmaceuticals affect human physiology. The goal is to develop process models of the human body that will predict pharmaceutical effects as a function of time and organ (or cell) type that will work for a wide variety of pharmaceuticals including small molecules, biologics, and chemotherapy agents. This course is organized to replicate group project work as it is practiced in industry. The class is divided into groups (typically 3 or 4 students) and each group will meet separately each week with the instructor. Hence, there is no regularly scheduled class times; student groups sign up for weekly meeting times using Starfish in Blackboard. These meetings typically will be 90 minutes long. The expectations and assignments for this course are quite different from most other courses. There are no weekly lectures by the instructor. Rather, each week each group will make a PowerPoint presentation on the week's topic or their progress on their project. Prerequisites 540.421 has a prerequisite of Pharmacokinetics .
Prerequisite(s): EN.540.632
Area: Engineering, Natural Sciences
Polymeric materials are ubiquitous in our society from Nature-made proteins and polysaccharides to synthetic plastics and fibers. Their applications range from day-to-day consumables to high performance materials used in critically demanding areas, such as aviation, aerospace and medical devices. The objective of this course is to provide an introductory overview on the field of polymer science and engineering. Students will learn some basic concepts in polymer synthesis, characterization, and processing. With the basic concepts established, industrial applications of polymeric materials will be discussed in two categories: structural polymers and functional polymers. Structural polymers, including plastics, fibers, rubbers, coatings, adhesives, and composites, will be discussed in terms of their structure, processing, and property relationship with a flavor of industrial relevant products and applications. Future trends in developing environmentally friendly polymers from renewable resources (“green polymer chemistry”) will also be covered. Lectures on functional polymers will be focused on their unique properties that are enabled by rational molecular design, controlled synthesis and processing (e.g. supramolecular assembly, and microfabrication). This class of specialty materials can find their use in high performance photovoltaics, batteries, membranes, and composites, and can also serve as “smart” materials for use in coatings, sensors, medical devices, and biomimicry.
Area: Engineering
Nanomedicine is a quickly growing area that exploits the novel chemical, physical, and biological properties of nanostructures and nanostructured materials for medical treatments. This course presents basic design principles of constructing nanomaterials for use in drug delivery, disease diagnosis and imaging, and tissue engineering. Three major topics will be discussed, including 1) nanocarriers for drug delivery that are formed through soft matter assembly (e.g., surfactants, lipids, block copolymers, DNA, polyelectrolytes, peptides), 2) inorganic nanostructures for disease diagnosis and imaging (e.g., nanoparticles of gold and silver, quantum dots and carbon nanotubes), and 3) supramolecular scaffolds for tissue engineering and regenerative medicine. Students are expected to learn the physical, chemical and biological properties of each nanomaterial, the underlying physics and chemistry of fabricating such material, as well as their advantages and potential issues when used for biomedical applications. This course will also provide students opportunities for case studies on commercialized nanomedicine products. After this class, students should gain a deeper understanding of current challenges in translating nanoscience and nanotechnology into medical therapies.
Area: Engineering, Natural Sciences
In this course we will aim for understanding the thermodynamics of chemical and bio-molecular systems. We will first review classical, macroscopic thermodynamics covering concepts such as equilibrium, stability and the role of thermodynamic potentials. Our goal will be to gain a feel for the generality of thermodynamics. Statistical mechanics provides a link between the mechanics of atoms and macroscopic thermodynamics. We will introduce this branch in two distinct ways: 1) following standard methods of developing concepts such as ensembles and partition functions, and 2) where we will treat the basis of statistical mechanics as a problem in inference. With this foundation, we will consider concepts relevant to understanding the liquid state. Chemical transformations in a liquid are of importance in much of chemistry and biology; quasi-chemical generalizations of the potential distribution theorem will be introduced to present these ideas. We hope to give an overview of modern developments relating equilibrium work to non-equilibrium work, as these are of increasing importance in studies on single molecule systems. Course is open to Chemical and Biomolecular Engineering BS/MS Concurrent and MSE students.
Area: Engineering
Review of numerical methods applied to kinetic phenomena and reactor design in chemical and biological processes. Homogeneous kinetics and interpretation of reaction rate data. Batch, plug flow, and stirred tank reactor analyses, including reactors in parallel and in series. Selectivity and optimization considerations in multiple reaction systems. Non isothermal reactors. Elements of heterogeneous kinetics, including adsorption isotherms and heterogeneous catalysis. Coupled transport and chemical/biological reaction rates.
Area: Engineering
This is a design course in which the design projects will be to develop pharmacokinetic models of the human body that can be used to understand the temporal distribution, spatial distribution and bioavailability of pharmaceutical drugs. The course (and software to be developed) will cover the spectrum of factors affecting pharmaceutical bioavailability including drug formulation, mode of dosing and dosing rate, metabolism and metabolic cascades, storage in fatty tissues, and diffusional limitations (such as in crossing the blood-brain barrier or diffusional differences between normal and cancerous cells). The goal is to develop process models of the human body that will predict pharmaceutical bioavailability as a function of time and organ (or cell) type that will work for a wide variety of pharmaceuticals including small molecules, biologics, and chemotherapy agents. This course is organized to replicate group project work as it is practiced in industry. The class is divided into groups (typically 3 or 4 students) and each group will meet separately each week with the instructor. Hence, there is no regularly scheduled class times; student groups sign up for weekly meeting times using Starfish in Blackboard. These meetings typically will be 90 minutes long. The expectations and assignments for this course are quite different from most other courses. There are no weekly lectures by the instructor. Rather, each week each group will make a PowerPoint presentation on the week's topic or their progress on their project.
Area: Engineering, Natural Sciences
A 'crash course' intended to teach new graduate students the fundamentals of programming and practical coding skills that will accelerate facility with computational aspects of graduate research. The course covers how computers work from the inside out, with an introduction to the Linux operating system. Programming will be taught primarily in Python, with an emphasis on solving research-related problems. This peer-taught course will cover variables, conditionals, loops, functions, classes, plotting, data structures and algorithms, with some advanced topics (C++, gradient-based minimization, Procrustes, eigenvalue/vector data analysis, embarrassingly parallel `for' loops). No prior programming skills are required, but experience with an introductory computing language will be helpful. Familiarity with differential equations and linear algebra will be assumed.
Area: Engineering
One of the most promising strategies for successfully designing complex biomolecular functions is to exploit nature's principles of evolution. This course provides an overview of the basics of molecular evolution as well as its experimental implementation. Current research problems in evolution-based biomolecular engineering will be used to illustrate principles in the design of biomolecules (i.e. protein engineering, RNA/DNA engineering), genetic circuits and complex biological systems including cells. A course in Biochemistry or Molecular Biology is recommendedMeets with EN.540.437Undergraduates with the appropriate background can take the course with permission of the instructor.
Area: Engineering, Natural Sciences
The field of micro / nanotechnology has been gaining tremendous momentum as evidenced by an explosive rise in the number of publications, patents and commercial activities. This is an introductory course intended to expose students to the field as well as real world applications. Lectures will include an overview of scaling of material properties at the nanoscale, micro and nanofabrication methods and essential analytical tools of relevance to the field. All through the course, we will go over electronic, optical and biological applications of emerging micro and nanoscale devices and materials. Co-listed with EN.540.440.
It is the goal of this course to move the graduate student (and advanced undergraduate student) from the introductory level of transport phenomena (undergraduate) to a level that will allow them to be effective in researching transport-related topics in a variety of biomedical, chemical and biochemical engineering areas. The basic equations that govern mass, momentum, and energy transport will be derived and used to solve problems that demonstrate the physical insight necessary to apply these equations to original situations. Some topics include solution techniques utilizing expansions of harmonic functions, singularity solutions, lubrication theory for flow in confined geometries, boundary layer theory, Stokes flow, forced convection, buoyancy-driven flow, Taylor-Aris dispersion, and reaction-diffusion. Open to PhD students as well as Chemical and Biomolecular Engineering BS/MSE Concurrent and MSE students.
Area: Engineering
Fundamental concepts in drug delivery from an engineering perspective. Biological organisms are viewed as highly interconnected networks where the surfaces/interfaces can be activated or altered ‘chemically’ and ‘physically/mechanically’. The importance of intermolecular and interfacial interactions on drug delivery carriers is the focal point of this course. Topics include: drug delivery mechanisms (passive, targeted); therapeutic modalities and mechanisms of action; engineering principles of controlled release and quantitative understanding of drug transport (diffusion, convection); effects of electrostatics, macromolecular conformation, and molecular dynamics on interfacial interactions; thermodynamic principles of self-assembly; chemical and physical characteristics of delivery molecules and assemblies (polymer based, lipid based); significance of biodistributions and pharmacokinetic models; toxicity issues and immune responses.Recommended prerequisite: Transport Phenomena - EN.540.303 or equivalent
Prerequisite(s): Students may take EN.540.465 or EN.540.665, but not both.
Area: Engineering, Natural Sciences
An introduction to the phenomenology of nonlinear dynamic behavior with emphasis on models of actual physical, chemical, and biological systems, involving an interdisciplinary approach to ideas from mathematics, computing, and modeling. The common features of the development of chaotic behavior in both mathematical models and experimental studies are stressed, and the use of modern data-mining tools to analyze dynamic data will be explored. Knowledge of Linear Algebra and Ordinary Differential Equations is a prerequisite (at an undergraduate level); Some computing experience is desirable. Emphasis will be placed on the geometric/visual computer-aided description and understanding of dynamics and chaos.
Prerequisite(s): ((AS.110.201 OR AS.110.212) AND ( S.110.302 OR AS.110.306) OR EN.553.291[C];Students may receive credit for only one of EN.553.473 OR EN.553.673 OR EN.540.468 OR EN.540.668.
Area: Engineering, Quantitative and Mathematical Sciences
In this course, we will discuss the important role that thermodynamics plays in chemical engineering practice. After a short review of the first and second laws, we will examine how thermodynamic concepts affect mass and energy balances. We will discuss the properties of systems containing pure species and mixtures and how to analyze the behavior of ideal and real systems. We will estimate heat effects associated with temperature change, phase change, and chemical reaction. The theory associated with properties of pure fluids will be discussed along its application to flow processes. We will present the framework for understanding solution thermodynamics and mixing. Applications of thermodynamics especially important to chemical engineers, such as vapor-liquid equilibrium in distillation and chemical reaction equilibrium in kinetics and reaction engineering, will be discussed. Examples will serve to illustrate how thermodynamic calculations are an integral part of the design and optimization of chemical processes.
Area: Engineering
Chemical reaction engineering deals with the analysis on data and the design of equipment in which reactions occur. Reactors may contain one or more phases and be used to conduct chemical or biochemical transformations. The course will cover the fundamental aspects of kinetics, data acquisition, data interpretation, heterogeneous catalysis and heat and mass transfer for each type of reactor. Special emphasis will be placed on the practical application of reaction engineering in the petrochemical, chemical, biochemical and materials industries. The course will make student aware of the needs and opportunities for chemical reaction engineering in industry.
Area: Engineering, Quantitative and Mathematical Sciences
This course covers separation and purification processes (adsorption, absorption, membranes, distillation, chromatography, etc.) critical to the production of chemicals, materials, clean water, safe food, energy and pharmaceuticals. It also covers separations as applied in recycling and reuse and in mitigation of pollution. Integration of separation processes with reactors for intensified processes and reactive separations are also discussed. Emphasis is given on fundamentals of mass transfer processes and how they can be integrated for process design and process scale assessment.
Prerequisite(s): EN.540.303 AND EN.540.203
Area: Engineering
This course discusses chemical reaction kinetics, with an emphasis on understanding the macroscopic reaction phenomena (reaction rates, activation energies, rate constants, etc.) from microscopic molecular dynamics. Topics of interest include reacting chemical mixtures, molecular collision theory, potential energy surfaces, transition state theory, uni- or bi-molecular reaction dynamics, etc. Catalytic mechanisms will be discussed in terms of heterogeneous reactions at solid-gas interface and homogeneous reactions in solution phase. Scenarios of applications will cover examples drawn from petroleum and chemical industries, pharmaceutics, renewable energy technologies (e.g., fuel cells), and biomedicine (enzymatic catalysis).
Prerequisite(s): EN.540.301 AND EN.540.630
Area: Engineering
This course is the third of a two, three or four semester sequence in Product Design. It is intended for students in the ChemBE master’s program. This course guides the student through the complex process of new product design. Product design concerns the recognition of customer needs, the creation of suitable specifications, and the selection of best products to fulfill needs. It also requires consideration of safety of product production workers, public safety and environment impact. Students work in small teams to develop a new product idea, design the product and then iterate on prototype development. Students report weekly both orally and in writing on their accomplishments. Time is allowed so that laboratory tests can be performed and/or prototypes can be built. Note that generally at least two courses, 540.691 and 540.692, must be taken to complete the prototype development. These courses can be started in any term.
Area: Engineering