MATERIALS SCIENCE AND ENGINEERING

http://materials.jhu.edu/

Materials are essential to the construction of any engineering structure, from the smallest integrated circuit to the largest bridge. In almost every technology, the performance, reliability, or cost is determined by the materials used. As a result, the drive to develop new materials and processes (or to improve existing ones) makes materials science and engineering one of the most important and dynamic engineering disciplines.

The central theme of materials science and engineering is that the relationships among the structures, properties, processing, and performance of materials are crucial to their function in engineering structures. Materials scientists seek to understand these fundamental relationships and use this understanding to synthesize new materials or develop new processes for producing existing ones. Materials engineers design or select materials for particular applications and develop improved processing techniques. Since materials scientists and engineers must understand the properties of materials as well as their applications, the field is inherently interdisciplinary and draws on aspects of almost every other engineering discipline as well as physics, chemistry, and, most recently, biology. Because the field encompasses so many different areas, it is often categorized according to types of materials (metals, ceramics, polymers, and semiconductors) or to their applications (biomaterials, electronic materials, magnetic materials, or structural materials).

The department prepares students for successful careers in materials science and engineering, for advanced study in science or engineering, and for professional education in other fields. The goal of the undergraduate program is to provide a rigorous and comprehensive curriculum in materials science and engineering as well as in mathematics, basic sciences, humanities, and social sciences. Our low student-to-faculty ratio allows students close contact with faculty in both classroom and research environments, as well as with other students and researchers in the department. The student is encouraged to proceed at their own rate and to participate in interdisciplinary, interdepartmental, and interschool programs. In the tradition of Johns Hopkins, all of our undergraduate students participate in research, often beginning in their sophomore year, working closely with faculty and graduate students.

In recognition that biomaterials and nanotechnology represent two of the most rapidly developing areas of materials science and engineering, the Department of Materials Science and Engineering offers challenging specializations in biomaterials or nanotechnology within its undergraduate program.

Biomaterials

The field of biomaterials is concerned with the science and engineering of materials in biology and medicine. Engineering materials are increasingly used in applications such as drug delivery and gene therapy, scaffolds for tissue engineering, replacement body parts, and biomedical and surgical devices. Biomaterials is an inherently interdisciplinary field that requires deep understanding of the properties of materials in general, and the interactions of materials with the biological environment. The Biomaterials concentration is designed to provide a firm grounding in the physics, chemistry, and biology of materials, as well as breadth in general engineering, mathematics, humanities, and social science. In addition, students are encouraged to gain hands-on experience in biomaterials research laboratories. The program seeks to educate students to reach the forefront of leadership in the field of biomaterials engineering. While the fundamental principles of materials science still apply, a complete understanding of biomaterials and their interactions with biological environments requires a greater degree of specialization than the standard undergraduate curriculum provides. In recognition of completion of the Biomaterials concentration, a student may elect to have their academic transcript annotated to indicate a specialty in biomaterials.

Nanotechnology

Nanotechnology advances the utilization of materials and devices with extremely small dimensions. Nanotechnology is a visionary field, as micro and nanostructured devices impact all fields of engineering, from microelectronics (smaller, faster computer chips) to mechanical engineering (micromotors and actuators) to civil engineering (“smart,” self-healing nanocomposite materials for buildings and bridges) to biomedical engineering (biosensors and tissue engineering). Materials science is central to nanotechnology because the properties of materials can change dramatically when they are made extremely small. This observation is not simply that we need to measure such properties or develop new processing tools to fabricate nanodevices. Rather, our vision is that the wide (and sometimes unexpected!) variety of phenomena associated with nanostructured materials allow us to envision radically new devices and applications that can only be made with nanostructured materials. The Nanotechnology concentration encompasses a curriculum designed to train students in the fundamental interdisciplinary principles of materials science including physics and chemistry, and also to expose students to the forefront of nanomaterials research through elective classes as well as research laboratories. Students in the Nanotechnology concentration will be well-prepared for successful careers in materials engineering across a wide range of disciplines. In recognition of completion of the Nanotechnology concentration, a student may elect to have their academic transcript annotated to indicate a specialty in nanotechnology.

Graduate Curriculum

The graduate curriculum provides students with a broad yet thorough grounding in the fundamentals of materials science and engineering. After completing the core curriculum, students pursuing master and Ph.D. degrees take advanced courses that will allow them to work at the forefront of knowledge in their chosen specialty. Those desiring to conduct original research and advance the frontiers of knowledge pursue a master’s essay and/or Ph.D. thesis. To this end, the department has an outstanding and wide-ranging research program, with particular emphasis on nanomaterials, thin films, metastable materials, biomaterials, computational materials science, and materials characterization.

Facilities

The teaching and research facilities of the Department of Materials Science and Engineering are located in Maryland Hall, Krieger Hall, and Croft Hall on the Homewood campus. The Department also administers the Materials Characterization and Processing Facility, which houses advanced tools for electron microscopy, X-ray diffraction, facilities for sample preparation, optical microscopy, and mechanical testing, as well as many other advanced materials tools for research and education. Individual research groups have established laboratories with advanced
facilities for materials processing, nanotechnology, and materials characterization. Through collaboration with other departments and national laboratories, students and faculty also have access to a variety of other facilities that enable further cutting-edge advances in their research fields.

Undergraduate Programs
Materials play a central role in the performance and reliability of virtually every technology and living organism. The central theme of materials science and engineering is that the relationships between the structure, properties, processing, and performance of materials are crucial to their function. Materials scientists seek to understand these fundamental relationships, synthesize new materials, develop improved processes for making materials, and understand the role of materials in the functioning of biological organisms. The wide range of problems addressed makes materials science one of the most highly interdisciplinary and dynamic engineering disciplines.

The Materials Science & Engineering faculty strives to maintain the Johns Hopkins University tradition of training a small number of students of the highest quality. We measure our success by the impact our graduates have on the scientific and engineering communities. Our program is designed to provide a solid foundation for future career development for students with diverse career aspirations.

Accreditation
Our BS program in Materials Science and Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org (http://www.abet.org/).

Financial Aid
Information about scholarships and other sources of financial assistance for undergraduates is available from the Office of Student Financial Services (https://finaid.jhu.edu/). In addition, the faculty employs a number of undergraduates as laboratory assistants to help with various aspects of their individual research programs.

Graduate Programs
The Department of Materials Science and Engineering (DMSE) offers three graduate degrees: the Ph.D. (Doctor of Philosophy), the M.S.E. (Master of Science in Engineering), and the M.M.S.E. (Master of Materials Science and Engineering). After meeting the two-semester residency requirement, the Ph.D. and the M.S.E. programs can be completed on either a full-time or part-time basis (with advanced approval from the program, the Dean’s Office, and as relevant, in compliance with visa/immigration enrollment stipulations). Financial aid is available only for students matriculating as full-time, resident PhD students. The M.S.E. degree may be completed either with or without an essay, as described below.

Hopkins undergraduate students are encouraged to consider completing both the B.S. degree and the M.S.E. degree in a total of five years. This five-year, dual degree option offers additional preparation for the pursuit of Ph.D. programs and careers in materials science and engineering. Students are encouraged to consult their undergraduate advisors to gain information on M.S.E. programs at Hopkins, as well as third- and fourth-year course selections best suited to the pursuit of the M.S.E. degree.

The M.M.S.E. is a terminal master’s degree offered through Johns Hopkins Engineering for Professionals (EP) of the Whiting School of Engineering. The degree program consists of 10 courses offered primarily remotely/asynchronously. Students interested in this program should apply through the EP www.ep.jhu.edu (http://www.ep.jhu.edu).

Financial Aid
Merit and need-based grants, work-study opportunities, and federal student loans to undergraduate students are administered by the Office of Student Financial Services (http://www.jhu.edu/finaid/). This office also provides access to federal student loans and work-study opportunities for graduate students.

Master’s Degree Students
Students who have graduated with a Johns Hopkins University undergraduate degree automatically earn a Dean’s Master’s Fellowship covering half of tuition for every semester (fall/spring) of full-time enrollment in a WSE master’s degree program, provided they have either (a) completed eight full-time semesters of study at Johns Hopkins, or (b) have not been enrolled at JHU for at least one year.

Students pursuing a combined bachelor’s and master’s degree who have not yet completed eight full-time semesters of study at JHU, and have retained undergraduate status, are eligible to continue to apply for undergraduate financial aid through the Office of Student Financial Services.

• GoGrad Graduate Financial Aid (http://www.gograd.org/financial-aid/)
• GoGrad Graduate Scholarships (http://www.gograd.org/financial-aid/scholarships/)
• College Scholarships for Black Students (https://www.affordablecollegesonline.org/college-resource-center/black-students-college-scholarships/)

Students who have completed all the coursework, other than research, required for an MSE degree in Materials Science and Engineering and are in good academic standing may be eligible for a Master’s Research Scholarship. Please see the following form for details.

PhD Students
WSE PhD students are fully funded (tuition, health insurance and stipend) for the duration of their PhD program while they are in a full-time, resident status. Financial aid for full-time PhD candidates is provided directly from the Department of Materials Science and Engineering in the form of research assistantships and fellowships. All applicants to the PhD program are automatically considered for financial aid; there is no separate application.

Assistantships include:

• Full tuition support (100% first year tuition support provided by the Dean’s Office, in years 2-6, 80% tuition support from the Dean’s office, with the remaining 20% covered either by the student’s research advisor or by the department via fellowships)
• Stipend for living expenses (at least $35,600 for the 2022-2023 academic year)
• Individual health insurance
A list of estimated expenses for graduate study is available on the Homewood Graduate Student Affairs (https://homewoodgrad.jhu.edu/life-at-hopkins/costsandfunding/) website.

Qualified PhD students are strongly encouraged to apply for external fellowships. These prestigious awards provide significant flexibility in the choice of advisor and research program. Examples include:

- National Science Foundation Graduate Research Fellowship (http://www.nsfgrfp.org/)
- National Defense Science and Engineering Graduate Fellowship (http://ndseg.asee.org/)
- Hertz Foundation Applied Science Fellowship (http://www.hertzfoundation.org/)
- Computational Sciences Graduate Fellowship (http://www.krellinst.org/csgf/)
- Stewardship Science Graduate Fellowship (http://www.krellinst.org/ssi/)

Programs

- Materials Science and Engineering, Bachelor of Science (https://e-catalogue.jhu.edu/engineering/full-time-residential-programs/degree-programs/materials-science-engineering/materials-engineering-bachelor-science/)

For current course information and registration go to https://sis.jhu.edu/classes/

Courses

EN.510.106. Foundations of Materials Science & Engineering. 3 Credits.

Basic principles of materials science and engineering and how they apply to the behavior of materials in the solid state. The relationship between electronic structure, chemical bonding, and crystal structure is developed. Attention is given to characterization of atomic and molecular arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors and polymers (including proteins). The processing and synthesis of these different categories of materials. Basics about the phase diagrams of alloys and mass transport in phase transformations. Introduction to materials behavior including their mechanical, chemical, electronic, magnetic, optical and biological properties.

Area: Engineering, Natural Sciences

EN.510.107. Modern Alchemy. 3 Credits.

Can you really turn lead into gold? Converting common substances into useful materials that play important roles in today’s technologies is the goal of many modern scientists and engineers. In this course, we will survey selected topics related to modern materials, the processes that are used to make them as well as the inspiration that led to their development. Topics will include the saga of electronic paper, the sticky stuff of gecko feet and the stretchy truth of metal rubber.

Area: Engineering, Natural Sciences

EN.510.135. MSE Design Team I. 3 Credits.

This course is the first half of a two-semester course sequence for freshmen majoring or double majoring in materials science and engineering (MSE). This course provides a broad exposure to various aspects of planning and conducting independent research in a team setting (3 to 6 students on each team). In this course, MSE freshmen working with a team leader and seniors on the team, apply their general knowledge in MSE to develop the solution to open-ended problems.

Materials Science & Engineering Freshman Only. Recommended Course Background: EN.510.106, EN.510.109, or equivalent courses. *The team will meet 150 minutes per week at a time to be designated by the instructor.

Area: Engineering, Natural Sciences

EN.510.136. MSE Design Team I. 3 Credits.

This course is the second half of a two-semester course sequence for freshmen majoring or double majoring in materials science and engineering (MSE). This course provides a broad exposure to various aspects of planning and conducting independent research in a team setting (3 to 6 students on each team). In this course, MSE freshmen working with a team leader and seniors on the team, apply their general knowledge in MSE to develop the solution to open-ended problems.

Materials Science & Engineering Freshman Only. Recommended Course Background: EN.510.106, EN.510.109, or equivalent courses. *The team will meet 150 minutes per week at a time to be designated by the instructor.

EN.510.235. MSE Design Team I. 3 Credits.

This course is the first half of a two-semester course sequence for sophomores majoring or double majoring in materials science and engineering (MSE). This course provides a broad exposure to various aspects of planning and conducting independent research in a team setting (3 to 6 students on each team). In this course, MSE freshmen working with a team leader and seniors on the team, apply their general knowledge in MSE to develop the solution to open-ended problems.

Materials Science & Engineering Sophomores Only. Recommended Course Background: EN.510.106, EN.510.109, or equivalent courses. *The team will meet 150 minutes per week at a time to be designated by the instructor.

EN.510.236. MSE Design Team I. 3 Credits.

This course is the second half of a two-semester course sequence for sophomores majoring or double majoring in materials science and engineering (MSE). This course provides a broad exposure to various aspects of planning and conducting independent research in a team setting (3 to 6 students on each team). In this course, MSE freshmen working with a team leader and seniors on the team, apply their general knowledge in MSE to develop the solution to open-ended problems.

Materials Science & Engineering Sophomores Only. Recommended Course Background: EN.510.106, EN.510.109, or equivalent courses. *The team will meet 150 minutes per week at a time to be designated by the instructor.

Area: Engineering, Natural Sciences
EN.510.311. Structure Of Materials. 3 Credits.
First of the Introduction to Materials Science series, this course seeks to develop an understanding of the structure of materials at the atomic scale and building up to macroscopic structures. Topics include bonding, crystal structures, crystalline defects, symmetry and crystallography, microstructure, liquids and amorphous solids, diffraction, molecular solids and polymers, liquid crystals, amphiphilic materials, and colloids. This course contains computational modules; some prior knowledge of computer programming is needed. Recommended Course Background: EN.500.113 Gateway Computing: Python.
Prerequisite(s): ((AS.110.106 AND AS.110.107) OR (AS.110.108 AND AS.110.109)) OR (AS.110.107 AND AS.110.108) OR (AS.110.106 OR AS.110.109) AND (AS.030.103 OR (AS.030.101 AND AS.030.102)) AND ((AS.171.101 OR AS.171.103 OR AS.171.107) AND (AS.171.102 OR AS.171.104 OR AS.171.108))
Area: Engineering, Natural Sciences

EN.510.312. Thermodynamics/Materials. 3 Credits.
Second of the Introduction to Materials Science series, this course examines the principles of thermodynamics as they apply to materials. Topics include fundamental principles of thermodynamics, equilibrium in homogeneous and heterogeneous systems, thermodynamics of multicomponent systems, phase diagrams, thermodynamics of defects, and elementary statistical thermodynamics. This course contains computational modules; some prior knowledge of computer programming is needed. Recommended Course Background: EN.5:00.113 - Gateway Computing - MatLab.
Area: Engineering, Natural Sciences

EN.510.313. Mechanical Properties of Materials. 3 Credits.
Third of the Introduction to Materials Science series, this course is devoted to a study of the mechanical properties of materials. Lecture topics include elasticity, anelasticity, plasticity, and fracture. The concept of dislocations and their interaction with other lattice defects is introduced. This course contains computational modules; some prior knowledge of computer programming is needed.
Prerequisite(s): EN.500.113 AND EN.510.311
Area: Engineering, Natural Sciences

EN.510.314. Electronic Properties of Materials. 3 Credits.
Fourth of the Introduction to Materials Science series, this course is devoted to a study of the electronic, optical and magnetic properties of materials. Lecture topics include electrical and thermal conductivity, thermoelectricity, transport phenomena, dielectric effects, piezoelectricity, and magnetic phenomena. This course contains computational modules; some prior knowledge of computer programming is needed. Recommended Course Background: EN.510.202 (Computation and Programming for Materials Scientists and Engineers) or equivalent.
Prerequisite(s): EN.510.311
Area: Engineering, Natural Sciences

EN.510.315. Physical Chemistry of Materials II. 3 Credits.
Fifth of the Introduction to Materials Science series, this course covers diffusion and phase transformations in materials. Topics include Fick's laws of diffusion, atomic theory of diffusion, diffusion in multi-component systems, solidification, diffusional and diffusionless transformations, and interfacial phenomena. This course contains computational modules; some prior knowledge of computer programming is needed. Recommended Course Background: EN.510.202 (Computation and Programming for Materials Scientists and Engineers) or equivalent.
Prerequisite(s): EN.510.311 AND EN.510.312
Area: Engineering, Natural Sciences

EN.510.316. Biomaterials I. 3 Credits.
Sixth of the Introduction to Materials Science series, this course offers an overview of principles and properties of biomedical materials. Topics include properties of materials used in medicine, synthesis and properties of polymeric materials, polymeric biomaterials, natural and recombinant biomaterials, biodegradable materials, hydrogels, stimuli-sensitive materials, and characterizations of biomaterials. This course contains computational modules; some prior knowledge of computer programming is needed. Recommended Course Background: EN.510.202 (Computation and Programming for Materials Scientists and Engineers) or equivalent.
Area: Engineering, Natural Sciences

EN.510.335. MSE Design Team I. 3 Credits.
This course is the first half of a two-semester course sequence for freshmen, sophomores, and juniors majoring or double majoring in materials science and engineering (MSE). This course provides a broad exposure to various aspects of planning and conducting independent research in a team setting (3 to 6 students on each team). In this course, MSE freshmen, sophomores, and juniors, working with a team leader and seniors on the team, apply their general knowledge in MSE to develop the solution to open-ended problems. *The team will meet 150 minutes per week at a time to be designated by the instructor.
Recommended Course Background: EN.510.101, EN.510.109, or equivalent courses.
Area: Engineering, Natural Sciences

EN.510.336. MSE Design Team II. 3 Credits.
This course is the second half of a two-semester course sequence for juniors majoring or double majoring in materials science and engineering (MSE). This course provides a broad exposure to various aspects of planning and conducting independent research in a team setting (3 to 6 students on each team). In this course, MSE juniors working with a team leader and seniors on the team, apply their general knowledge in MSE to develop the solution to open-ended problems. Materials Science & Engineering Freshman Only. Recommended Course Background: EN.510.106, EN.510.109, or equivalent courses. *The team will meet 150 minutes per week at a time to be designated by the instructor.
Prerequisite(s): EN.510.335
Area: Engineering, Natural Sciences

EN.510.400. Introduction to Ceramics. 3 Credits.
This course will examine the fundamental structure and property relationships in ceramic materials. Areas to be studied include the chemistry and structure of ceramics and glasses, microstructure and property relationships, ceramic phase relationships, and ceramic properties. Particular emphasis will be placed on the physical chemistry of particulate systems, characterization, and the surface of colloid chemistry of ceramics.
Recommended Course Background: EN.510.311, EN.510.312, or permission of instructor.
Area: Engineering, Natural Sciences

EN.510.402. Dynamics of Soft Materials. 3 Credits.
The structure and properties of soft materials will be studied with the focus on understanding ways to control and measure the dynamics. Soft materials to be studied include colloids, emulsions, dispersions, drops, polymers and gels. We will use experimental tools to study these materials including optical microscopy, rheometers, and atomic force microscopy.
Recommended Course Background: EN.510.311 or permission of instructor.
Area: Engineering, Natural Sciences
EN.510.403. Materials Characterization. 3 Credits.
This course will describe a variety of techniques used to characterize the structure and composition of engineering materials, including metals, ceramics, polymers, composites and semiconductors. The emphasis will be on microstructural characterization techniques, including optical and electron microscopy, X-ray diffraction, and thermal analysis and surface analytical techniques, including Auger electron spectroscopy, secondary ion mass spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. Working with the JHU museums, we will use the techniques learned in class to characterize historic artifacts.
Area: Engineering, Natural Sciences

EN.510.405. Materials Science of Energy Technologies. 3 Credits.
This course examines the science and engineering of contemporary and cutting-edge energy technologies. Materials Science and Mechanical Engineering fundamentals in this area will be complemented by case studies that include fuel cells, solar cells, lighting, thermoelectrics, wind turbines, engines, nuclear power, biofuels, and catalysis. Students will consider various alternative energy systems, and also to research and engineering of traditional energy technologies aimed at increased efficiency, conservation, and sustainability. Recommended Course Background: undergraduate course in thermodynamics.
Area: Engineering, Natural Sciences

EN.510.407. Biomaterials II: Host response and biomaterials applications. 3 Credits.
This course focuses on the interaction of biomaterials with the biological system and applications of biomaterials. Topics include biomaterials fabrication and characterization, host reactions to biomaterials, cell-biomaterials interaction, biomaterials for tissue engineering applications, biomaterials for controlled drug and gene delivery, and biomaterials for artificial organs.
Prerequisite(s): EN.510.316 or permission of instructor.
Area: Engineering, Natural Sciences

EN.510.414. Transmission electron microscopy: principle and practice. 3 Credits.
Introduction to basic principles of electron diffraction, phase contrast and Z-contrast and applications of these principles in microstructural characterization of materials by electron diffraction, high-resolution electron microscopy and scanning transmission electron microscopy. Also listed as EN.510.665.
Area: Engineering, Natural Sciences

EN.510.415. The Chemistry of Materials Synthesis. 3 Credits.
Many of the latest breakthroughs in materials science and engineering have been driven by new approaches to their synthesis, which has allowed the preparation of materials with fanciful structures and fascinating properties. This advanced course will explore synthetic approaches to multifunctional and nanostructured materials, ranging from opals to complex polymers to nanowires and quantum dots.
Applications include electronics, energetics, and medical delivery. Participants will gain sufficient familiarity with synthesis options to be able to design research programs that rely on them. Emphasis will be placed on broad strategies that lead to material functionality, rather than detailed step-by-step sequences. Some topics will be selected “on the fly” from the most exciting current literature.
Area: Engineering, Natural Sciences

EN.510.416. Physical Behavior of Metamaterials. 3 Credits.
The field of metamaterials is a rapidly evolving area within the physical and engineering sciences that relates to diverse applications such as transformation optics for advanced imaging, acoustic noise reduction for architectural spaces and electromagnetic shielding for electronic devices. The goal of metamaterials design is to guide energy transport through specified regions of a material avoiding others that might contain delicate or otherwise susceptible structures that must be shielded. Energy transport can occur via electromagnetic waves, acoustic waves, electrical currents or thermal fluxes. Through rational design of the material micro/meso/macrostructure, any one of these can be effectively directed in the material. The challenge is to engineer materials that respond in a way that approximates the desired design. In this course, the methods for metamaterials design will be investigated along with those aspects of materials science and engineering that allow for the fabrication of these materials. Also listed as EN.510.616
Prerequisite(s): EN.510.31 AND EN.510.314 or their equivalents

EN.510.420. Stealth Science & Engineering. 3 Credits.
The goal of stealth engineering is the creation of objects that are not easily detected using remote sensing techniques. To achieve this end, engineered systems of materials are arrayed to alter the signature of objects by reducing energy returned to remote observers. This course will provide an introduction to the general principles behind signature reduction by examining the mathematics and science behind basic electromagnetic and acoustic transport processes. Specific topics will include energy absorbing materials, anti-reflection coatings, wave guiding and scattering, metamaterials and adaptive screens. Co-listed with EN.510.640
Area: Engineering, Natural Sciences

EN.510.422. Micro and Nano Structured Materials & Devices. 3 Credits.
Almost every material’s property changes with scale. We will examine ways to make micro- and nano-structured materials and discuss their mechanical, electrical, and chemical properties. Topics include the physics and chemistry of physical vapor deposition, thin film patterning, and microstructural characterization. Particular attention will be paid to current technologies including computer chips and memory, thin film sensors, diffusion barriers, protective coatings, and microelectromechanical (MEMS) devices.
Area: Engineering, Natural Sciences

EN.510.425. Advanced Materials for Battery. 3 Credits.
This class provides an overview of the basic principles of electrochemical energy storage and the essential roles of advanced materials in batteries. Materials selection and design for the anodes and cathodes of lithium and sodium batteries are introduced on the basis of crystallography and materials chemistry. State-of-the-art operando characterization techniques of battery materials are also discussed in the course. This course is also listed as EN.510.625.
Prerequisite(s): EN.510.311 AND EN.510.312
Area: Engineering, Natural Sciences

EN.510.426. Biomolecular Materials I - Soluble Proteins and Amphiphiles. 3 Credits.
This course will examine the fundamental structure, interactions, and function relationship for biological macromolecules. The course will emphasize experimental methods and experimental design, and the physics behind human disease. Topics will include micellization, protein folding and misfolding, and macromolecular interactions. Required Course Pre-Requisites: EN.580.221 & EN.510.312 - Co-listed with EN.510.621
Prerequisite(s): EN.580.221 AND EN.510.312
Area: Engineering, Natural Sciences
EN.510.428. Material Science Laboratory I. 3 Credits.
This course focuses on characterizing the microstructure and mechanical properties of structural materials that are commonly used in modern technology. A group of A1 alloys, Ti alloys, carbon and alloy steels, and composite materials that are found, for example, in actual bicycles will be selected for examination. Their microstructures will be studied using optical metallography, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The mechanical properties of these same materials will be characterized using tension, compression, impact, and hardness tests. The critical ability to vary microstructure and therefore properties through mechanical and heat treatments will also be demonstrated and investigated in the above materials. Restricted to Materials Science & Engineering juniors only
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Corequisite(s): EN.510.311
Area: Engineering, Natural Sciences
Writing Intensive

EN.510.429. Materials Science Laboratory II. 3 Credits.
This laboratory concentrates on the experimental investigation of electronic properties of materials using basic measurement techniques. Topics include thermal conductivity of metal alloys, electrical conductivity of metals/metal alloys and semiconductors, electronic behavior at infrared wavelengths, magnetic behavior of materials, carrier mobility in semiconductors and the Hall effect in metals and semiconductors. Lab Assignment is by Professor. Recommended Course Background: EN.510.311 or Permission Required.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering, Natural Sciences
Writing Intensive

EN.510.430. Biomaterials Lab. 3 Credits.
This laboratory course concentrates on synthesis, processing and characterization of materials for biomedical applications, and characterization of cell-materials interaction. Topics include synthesis of biodegradable polymers and degradation, electrosprinning of polymer nanofibers, preparation of polymeric microspheres and drug release, preparation of plasmid DNA, polymer-mediated gene delivery, recombinant protein synthesis and purification, self-assembly of collagen fibril, surface functionalization of biomaterials, cell culture techniques, polymer substrates for cell culture, and mechanical properties of biological materials. Recommended Course Background: EN.510.407
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering, Natural Sciences
Writing Intensive

EN.510.433. Senior Design Research. 3 Credits.
This course is the first half of a two-semester sequence required for seniors majoring or double majoring in materials science and engineering. It is intended to provide a broad exposure to many aspects of planning and conducting independent research. During this semester, students join ongoing graduate research projects for a typical 10-12 hours per week of hands-on research. Classroom activities include discussions, followed by writing of research pre-proposals (white papers), proposals, status reports and lecture critiques of the weekly departmental research seminar. Co-listed with EN.510.438 and EN.510.440
Prerequisite(s): (EN.510.311 AND EN.510.312 AND EN.510.313 AND EN.510.314 AND EN.510.315 EN.510.316) AND (EN.510.428 AND EN.510.429)
Area: Engineering
Writing Intensive

EN.510.434. Senior Design/Research II. 3 Credits.
This course is the second half of a two-semester sequence required for seniors majoring or double majoring in materials science and engineering. It is intended to provide a broad exposure to many aspects of planning and conducting independent research. Recommended Course Background: EN.510.311-EN.510.312, EN.510.428-EN.510.429, and EN.510.433
Meets with EN.510.439, EN.510.441, EN.510.446, and EN.510.448
Area: Engineering, Natural Sciences
Writing Intensive

EN.510.435. Mechanical Properties of Biomaterials. 3 Credits.
This course will focus on the mechanical properties of biomaterials and the dependence of these properties on the microstructure of the materials. Organic and inorganic systems will be considered through a combination of lectures and readings and the material systems will range from cells to bones to artificial implants. Same course as 510.635.
Area: Engineering, Natural Sciences

EN.510.436. Biomaterials for Cell Engineering. 3 Credits.
This course focuses on the development of biomaterials both as new tools to study fundamental biology and as means to direct cell behavior and function for biomedical applications. Topics include the material properties of cells and tissue, biomaterials for recapitulating cell microenvironment, biomaterials for studying and directing cell mechanotransduction, biomaterials for gene editing, biomaterials for immunotherapy, and biomaterials for neuroengineering. This course will have in-depth discussions on recent findings and publications in these areas. This course is also listed as EN.510.636.
Prerequisite(s): (EN.510.316 OR EN.510.407 OR EN.510.610)
Area: Engineering, Natural Sciences

EN.510.438. Biomaterials Senior Design I. 3 Credits.
This course is the first half of a two-semester sequence required for seniors majoring in materials science and engineering with the Biomaterials Concentration. It is intended to provide a broad exposure to many aspects of planning and conducting independent research with a focus on biomaterials. During this semester, students join ongoing graduate research projects for a typical 10-12 hours per week of hands-on experiences in design and research. Classroom activities include discussions, followed by writing of research pre-proposals (white papers), proposals, status reports and lecture critiques of departmental research seminars. Co-listed with EN.510.440 and EN.510.443
Prerequisite(s): (EN.510.311 AND EN.510.312 AND EN.510.313 AND EN.510.314 AND EN.510.315 EN.510.316) AND (EN.510.428 AND EN.510.429)
Area: Engineering, Natural Sciences
Writing Intensive
EN.510.439. Biomaterials Senior Design II. 3 Credits.
This course is the second half of a two-semester sequence required for seniors majoring in materials science and engineering with the Biomaterials Concentration. It is intended to provide a broad exposure to many aspects of planning and conducting independent research with a focus on biomaterials. During this semester, verbal reporting of project activities and status is emphasized, culminating in student talks presented to a special session of students and faculty. Students also prepare a poster and a written final report summarizing their design and research results. Recommended Course Background: EN.510.311-EN.510.312, EN.510.428-EN.510.429, and EN.510.433 or 510.438 or 510.440 Meets with EN.510.434, EN.510.441, EN.510.446, and EN.510.448
Area: Engineering, Natural Sciences
Writing Intensive

EN.510.440. Nanomaterials Senior Design I. 3 Credits.
This course is the first half of a two-semester sequence required for seniors majoring in materials science and engineering with the Nanotechnology Concentration. It is intended to provide a broad exposure to many aspects of planning and conducting independent research with a focus on nanotechnology and nanomaterials. During this semester, students join ongoing graduate research projects for a typical 10-12 hours per week of hands-on experiences in design and research. Classroom activities include discussions, followed by writing of research pre-proposals (white papers), proposals, status reports and lecture critiques of departmental research seminars. Co-listed with EN.510.433 and EN.510.438
Prerequisite(s): (EN.510.311 AND EN.510.312 AND EN.510.313 AND EN.510.314 AND EN.510.315 EN.510.316) AND (EN.510.428 AND EN.510.429)
Area: Engineering, Natural Sciences
Writing Intensive

EN.510.441. Nanomaterials Senior Design II. 3 Credits.
This course is the second half of a two-semester sequence required for seniors majoring in materials science and engineering with the Nanotechnology Concentration. It is intended to provide a broad exposure to many aspects of planning and conducting independent research with a focus on nanotechnology and nanomaterials. During this semester, verbal reporting of project activities and status is emphasized, culminating in student talks presented to a special session of students and faculty. Students also prepare a poster and a written final report summarizing their design and research results. Recommended Course Background: EN.510.311-EN.510.312, EN.510.428-EN.510.429, and EN.510.433 or 510.438 or 510.440 Meets with EN.510.434, EN.510.439, EN.510.446, and EN.510.448
Area: Engineering, Natural Sciences
Writing Intensive

EN.510.442. Nanomaterials Lab. 3 Credits.
The objective of the laboratory course will be to give students hands on experience in nanotechnology based device fabrication through synthesis, patterning, and characterization of nanoscale materials. The students will use the knowledge gained from the specific synthesis, characterization and patterning labs to design and fabricate a working nanoscale/nanostructured device. The course will be augmented with comparisons to microscale materials and technologies. These comparisons will be key in understanding the unique phenomena that enable novel applications at the nanoscale. DMSE Seniors or permission of the instructor.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering, Natural Sciences

EN.510.443. Chemistry and Physics of Polymers. 3 Credits.
The course will describe and evaluate the synthetic routes, including condensation and addition polymerization, to macromolecules with varied constituents and properties. Factors that affect the efficiencies of the syntheses will be discussed. Properties of polymers that lead to technological applications will be covered, and the physical basis for these properties will be derived. Connections to mechanical, electronic, photonic, and biological applications will be made. Also listed as EN.510.643. Recommended Course Background: Organic Chemistry I and one semester of thermodynamics.
Area: Engineering, Natural Sciences

EN.510.445. MSE Design Team II. 3 Credits.
This course is the first half of a two-semester course sequence for senior students majoring or double majoring in MSE. This course provides a broad experience to various aspects of planning and conducting independent research in a team setting (3 to 6 students on each team). In this course, MSE seniors, working with a team leader and a group of freshmen, sophomores, and seniors, apply their knowledge in their track area to generate the solution to open-ended problems encountered in MSE. Recommended Course Background: EN.510.101, EN.510.311, EN.510.312, EN.510.428, EN.510.429.
Area: Engineering, Natural Sciences
Writing Intensive

EN.510.446. MSE Design Team II. 3 Credits.
This course is the second half of a two-semester course sequence for senior students majoring or double majoring in MSE. This course provides a broad experience to various aspects of planning and conducting independent research in a team setting (3 to 6 students on each team). In this course, MSE seniors, working with a team leader and a group of freshmen, sophomores, and seniors, apply their knowledge in their track area to generate the solution to open-ended problems encountered in MSE. Materials Science & Engineering Seniors Only Recommended Course Background: EN 510.101, EN 510.311, EN 510.312, EN 510.428, EN 510.429. Meets with EN.510.434, EN.510.439, EN.510.441 and EN.510.448.
Prerequisite(s): EN.510.445
Area: Engineering, Natural Sciences
EN.510.447. MSE Design Team Leader. 4 Credits.
This course is the first half of a two-semester course sequence for students majoring or double majoring in MSE. This course provides a leadership experience to various aspects of planning and conducting independent research in a team setting. In this course, MSE seniors assemble and lead a student team consisting of 3 to 6 students, apply their knowledge in their track area, and develop leadership skills to generate the solution to open-ended problems encountered in MSE. Recommended Course Background: EN.510.101, EN.510.311, EN.510.312, EN.510.428, EN.510.429.
Area: Engineering, Natural Sciences

EN.510.448. MSE Design Team Leader. 4 Credits.
This course is the second half of a two-semester course sequence for students majoring or double majoring in MSE. This course provides a leadership experience to various aspects of planning and conducting independent research in a team setting. In this course, MSE seniors assemble and lead a student team consisting of 3 to 6 students, apply their knowledge in their track area, and develop leadership skills to generate the solution to open-ended problems encountered in MSE. Materials Science & Engineering Seniors Only. Recommended Course Background: EN.510.101, EN.510.311, EN.510.312, EN.510.428, EN.510.429. Meets with EN.510.434, EN.510.439, EN.510.441, and EN.510.446
Prerequisite(s): EN.510.447
Area: Engineering, Natural Sciences

EN.510.450. Three Dimensional Microstructural Characterization of Materials. 3 Credits.
An undergraduate level introduction to experimental techniques and data analysis for characterizing the microstructure of materials in three dimensions. Topics to be covered include serial sectioning, principles of optical and scanning-electron microscopy and electron back-scatter diffraction (EBSD), high-energy x-ray diffraction microscopy, and techniques for 3D data reduction, representation, and analysis. Pre-Requisites: EN.510.311 & EN.510.313. Also listed as EN.510.701.
Prerequisite(s): EN.510.311 AND EN.510.313
Area: Engineering, Natural Sciences

EN.510.451. Recycling for Sustainability. 3 Credits.
“Im so confused...which bin do I choose?” Recycling everyday materials and re-using objects made from them have been part of our country’s materials-usage landscape for decades. However, as we engineer a sustainable future, recycling will become an ever-increasing component of our strategies for material selection and product design. This course provides an overview of recycling – from the basics of materials recovery, processing and re-use to its economic and environmental impacts. Students will learn about industrial practices associated with recycling and how these relate to our everyday consumer behaviors. Field experiences and laboratory demonstrations will expose students to the realities of recycling. The challenges associated with recycling will be examined to gain a greater understanding of issues related to the use of materials in a sustainable world.
Area: Engineering, Natural Sciences

EN.510.457. Materials Science of Thin Films. 3 Credits.
The processing, structure, and properties of thin films are discussed emphasizing current areas of scientific and technological interest. Topics include elements of vacuum science and technology; chemical and physical vapor deposition processes; film growth and microstructure; chemical and microstructural characterization methods; epitaxy; mechanical properties such as internal stresses, adhesion, and strength; and technological applications such as superlattices, diffusion barriers, and protective coatings. Co-listed with EN.510.657
Area: Engineering, Natural Sciences

EN.510.467. Metal Additive Manufacturing. 3 Credits.
Additive Manufacturing (AM), also known colloquially as 3D Printing, is a disruptive technology that has received significant attention in recent years in both the popular press and the manufacturing industry. While the current and potential future applications for this technology, especially for mission-critical metal parts, are impressive and imaginative, the full potential for metal AM has not been realized due to current limitations and a lack of full understanding of metal AM processes. In this class we will cover (1) the current state-of-the-art of AM; (2) the production steps necessary to manufacture AM parts; and (3) the closely linked topics of AM materials and AM processes. While non-metal AM materials such as polymers, composites, and ceramics will be included, the primary focus will be on metal materials fabricated with laser powder bed fusion processes. Specific topics covered will include conventional vs. AM materials, meltpool phenomena including solidification, kinetics and solid-state kinetics, post-process thermal treatments, the process-properties relationship, in-situ process sensing, indirect process measurement methods and process modeling. Recent implementations of metal additive manufacturing, such as those in the aerospace and health care industries, will be presented extensively throughout the class as study cases. Popular press articles and technical papers on AM will be reviewed and discussed. Students taking this class will be expected to participate actively and bring to the class real or potential applications of AM in their workplaces. Co-listed with EN.510.667
Prerequisite(s): EN.510.311 AND EN.510.315
Area: Engineering, Natural Sciences

EN.510.501. Undergraduate Research/Material Science. 3 Credits.
Student participation in ongoing research activities. Research is conducted under the supervision of a faculty member and often in conjunction with other members of the research group.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.510.502. Research in Materials Science. 1-3 Credits.
Student participation in ongoing research activities. Research is conducted under the supervision of a faculty member and often in conjunction with other members of the research group.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.510.504. Independent Study. 1-3 Credits.
Individual programs of study are worked out between students and the professor supervising their independent study project. Topics selected are those not formally listed as regular courses and include a considerable design component.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
EN.510.597. Research - Summer. 3 Credits.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.510.601. Structure Of Materials. 3 Credits.
An introduction to the structure of inorganic and polymeric materials. Topics include the atomic scale structure of metals, alloys, ceramics, and semiconductors; structure of polymers; crystal defects; elementary crystallography; tensor properties of crystals; and an introduction to the uses of diffraction techniques (including X-ray diffraction and electron microscopy) in studying the structure of materials. Recommended Course Background: undergraduate chemistry, physics, and calculus or permission of instructor.

EN.510.602. Thermodynamics Of Materials. 3 Credits.
An introduction to the classical and statistical thermodynamics of materials. Topics include the zeroth law of thermodynamics; the first law (work, internal energy, heat, enthalpy, heat capacity); the second law (heat engines, Carnot cycle, Clausius inequality, entropy, absolute temperature); equilibrium of single component systems (free energy, thermodynamic potentials, virtual variations, chemical potential, phase changes); equilibrium of multicomponent systems and chemical thermodynamics; basics of statistical physics (single and multiple particle partition functions, configurational entropy, third law; statistical thermodynamics of solid solutions); and equilibrium composition-temperature phase diagrams. Recommended Course Background: undergraduate calculus, chemistry, and physics or permission of instructor.

EN.510.603. Phase Transformations of Materials. 3 Credits.
This course presents a unified treatment of the thermodynamics and kinetics of phase transformations from phenomenological and atomistic viewpoints. Phase transformations in condensed metal and nonmetal systems are discussed. Recommended Course Background: EN.510.601 and EN.510.602

EN.510.604. Mechanical Properties of Materials. 3 Credits.
An introduction to the properties and mechanisms that control the mechanical performance of materials. Topics include mechanical testing, tensor description of stress and strain, isotropic and anisotropic elasticity, plastic behavior of crystals, dislocation theory, mechanisms of microscopic plasticity, creep, fracture, and deformation and fracture of polymers. Recommended Course Background: EN.510.601
Prerequisite(s): Students who have taken EN.530.604 are not eligible to take EN.510.604.

EN.510.605. Electrical, Optical and Magnetic Properties of Materials. 3 Credits.
An overview of electrical, optical and magnetic properties arising from the fundamental electronic and atomic structure of materials. Continuum materials properties are developed through examination of microscopic processes. Emphasis will be placed on both fundamental principles and applications in contemporary materials technologies. Recommended Course Background: EN.510.601

EN.510.607. Biomaterials II: Host response and biomaterials applications. 3 Credits.
This course focuses on the interaction of biomaterials with the biological system and applications of biomaterials. Topics include host reactions to biomaterials and their evaluation, cell-biomaterials interaction, biomaterials for tissue engineering applications, biomaterials for controlled drug and gene delivery, biomaterials for cardiovascular applications, biomaterials for orthopedic applications, and biomaterials for artificial organs. Recommended Course Background: Undergraduate chemistry and basic cell biology. Also listed as EN.510.407

EN.510.610. Fundamentals of Biomaterials. 3 Credits.
This course provides an introduction to biomaterials in medicine. Topics include: hard and soft biomaterials, materials science concepts specific to biomaterials, surface thermodynamics, surfactants and surface functionalization, proteins and protein-surface interactions, tissue engineering and regenerative medicine, wound healing and the inflammatory response, and drug delivery systems. Pre-requisites: 510.602 (Thermodynamics of Materials) or permission of instructor.
Area: Engineering, Natural Sciences

EN.510.615. Physical Properties of Materials. 3 Credits.
A detailed survey of the relationship between materials properties and underlying microstructure. Structure/property/process relationships will be examined across a wide spectrum of materials including metals, ceramics, polymers and biomaterials, and properties including electrical, magnetic, optical, thermal, mechanical, chemical and biocompatibility.
Area: Engineering, Natural Sciences

EN.510.616. Physical Behavior of Metamaterials. 3 Credits.
The field of metamaterials is a rapidly evolving area within the physical and engineering sciences that relates to diverse applications such as transformation optics for advanced imaging, acoustic noise reduction for architectural spaces and electromagnetic shielding for electronic devices. The goal of metamaterials design is to guide energy transport through specified regions of a material avoiding others that might contain delicate or otherwise susceptible structures that must be shielded. Energy transport can occur via electromagnetic waves, acoustic waves, electrical currents or thermal fluxes. Through rational design of the material micro/meso/macrostructure, any one of these can be effectively directed in the material. The challenge is to engineer materials that respond in a way that approximates the desired design. In this course, the methods for metamaterials design will be investigated along with those aspects of materials science and engineering that allow for the fabrication of these materials. Also listed as EN.510.416

EN.510.621. Biomolecular Materials I - Soluble Proteins and Amphiphiles. 3 Credits.
Area: Engineering, Natural Sciences

EN.510.622. Micro and Nano Structured Materials & Devices. 3 Credits.
Almost every material’s property changes with scale. We will examine ways to make micro- and nano-structured materials and discuss their mechanical, electrical, and chemical properties. Topics include the physics and chemistry of physical vapor deposition, thin film patterning, and microstructural characterization. Particular attention will be paid to current technologies including computer chips and memory, thin film sensors, diffusion barriers, protective coatings, and microelectromechanical (MEMS) devices. (Also listed as 510.622/422)
EN.510.624. X-ray Scattering, Diffraction, and Imaging. 3 Credits.
An introduction to the uses of x-rays for structural characterization of materials, including (i) kinematic theory of x-ray scattering and diffraction by single crystals, polycrystals, liquids, and amorphous solids; (ii) principles of Fourier optics with applications to x-ray radiography and phase-contrast x-ray imaging; and (iii) x-ray computed tomography (CT). Prerequisite: 510.601 or equivalent.

EN.510.625. Advanced Materials for Battery. 3 Credits.
This class provides an overview of the basic principles of electrochemical energy storage and the essential roles of advanced materials in batteries. Materials selection and design for the anodes and cathodes of lithium and sodium batteries are introduced on the basis of crystallography and materials chemistry. State-of-the-art operando characterization techniques of battery materials are also discussed in the course. This class is also listed as EN.510.425.
Prerequisite(s): EN.510.601 AND EN.510.602

EN.510.630. Molecular Simulation of Materials. 3 Credits.
Learn the fundamentals necessary to design and implement computer simulations on the molecular level. This course focuses on two widely used techniques: molecular-dynamics and Monte Carlo simulation. Both are introduced in the context of a review of the basic theoretical background. This class will cover the specifics of handling molecular interactions using empirical potentials, applying proper boundary conditions and simulating various equilibrium ensembles and non-equilibrium systems. Lectures will address how to extract transport coefficients, atomic scale correlations and local stresses and strains from simulation data, and computational issues such as algorithmic complexity and efficiency. The final weeks of the course will focus on new and cutting-edge advances in these methods.
Area: Engineering, Natural Sciences

EN.510.633. Computational Materials Design. 3 Credits.
This course will cover the use of computational methods to discover and design materials for new technologies. Topics addressed will include structure prediction, materials informatics, and the calculation of material properties from first principles using methods such as density functional theory. Participants will gain hands-on experience with modern computational techniques.
Area: Engineering, Natural Sciences

EN.510.636. Biomaterials for Cell Engineering. 3 Credits.
This course focuses on the development of biomaterials both as new tools to study fundamental biology and as means to direct cell behavior and function for biomedical applications. Topics include the material properties of cells and tissue, biomaterials for recapitulating cell microenvironment, biomaterials for studying and directing cell mechanotransduction, biomaterials for gene editing, biomaterials for immunotherapy, and biomaterials for neuroengineering. This course will have in-depth discussions on recent findings and publications in these areas. This course is also listed as EN.510.436.

EN.510.640. Stealth Engineering. 3 Credits.
The goal of stealth engineering is the creation of objects that are not easily detected using remote sensing techniques. To achieve this end, engineered systems of materials are arrayed to alter the signature of objects by reducing energy returned to remote observers. This course will provide an introduction to the general principles behind signature reduction by examining the mathematics and science behind basic electromagnetic and acoustic transport processes. Specific topics will include energy absorbing materials, anti-reflection coatings, wave guiding and scattering, metamaterials and adaptive screens. Co-listed with EN.510.420.
Area: Engineering, Natural Sciences

EN.510.643. Chemistry and Physics of Polymers. 3 Credits.
The course will describe and evaluate the synthetic routes, including condensation and addition polymerization, to macromolecules with varied constituents and properties. Factors that affect the efficiencies of the syntheses will be discussed. Properties of polymers that lead to technological applications will be covered, and the physical basis for these properties will be derived. Connections to mechanical, electronic, photonic, and biological applications will be made. Also listed as EN.510.443. Recommended Course Background: Organic Chemistry I and one semester of thermodynamics.
Area: Engineering, Natural Sciences

EN.510.657. Materials Science of Thin Films. 3 Credits.
The processing, structure, and properties of thin films are discussed emphasizing current areas of scientific and technological interest. Topics include elements of vacuum science and technology; chemical and physical vapor deposition processes; film growth and microstructure; chemical and microstructural characterization methods; epitaxy; mechanical properties such as internal stresses, adhesion, and strength; and technological applications such as superlattices, diffusion barriers, and protective coatings. Co-listed with EN.510.457

EN.510.658. Electroanalytical Chemistry & Energy Conversion. 3 Credits.
Electrochemical methods are used by researchers in many fields to study topics such as (photo)electrocatalysis, batteries, and chemical sensors. This course will cover the basic theory and applications of electrochemistry to provide students with foundational knowledge of electrified solid-solution interfaces. Fundamental topics including interfacial charge transfer, mass transport, electric double layer structure, electrode kinetics, and analytical methods will be covered. State-of-the-art topics in electrochemistry research will also be discussed.
Area: Engineering

EN.510.665. Transmission electron microscopy: principle and practice. 3 Credits.
Introduction to basic principles of electron diffraction, phase contrast and Z-contrast and applications of these principles in microstructural characterization of materials by electron diffraction, high-resolution electron microscopy and scanning transmission electron microscopy. Also listed as EN.510.414.
Area: Engineering, Natural Sciences
EN.510.667. Metal Additive Manufacturing. 3 Credits.
Additive Manufacturing (AM), also known colloquially as 3D Printing, is a disruptive technology that has received significant attention in recent years in both the popular press and the manufacturing industry. While the current and potential future applications for this technology, especially for mission-critical metal parts, are impressive and imaginative, the full potential for metal AM has not been realized due to current limitations and a lack of full understanding of metal AM processes. In this class we will cover (1) the current state-of-the-art of AM; (2) the production steps necessary to manufacture AM parts; and (3) the closely linked topics of AM materials and AM processes. While non-metal AM materials such as polymers, composites, and ceramics will be included, the primary focus will be on metal materials fabricated with laser powder bed fusion processes. Specific topics covered will include conventional vs. AM materials, meltpool phenomena including solidification, kinetics and solid-state kinetics, post-process thermal treatments, the process-properties relationship, in-situ process sensing, indirect process measurement methods and process modeling. Recent implementations of metal additive manufacturing, such as those in the aerospace and health care industries, will be presented extensively throughout the class as study cases. Popular press articles and technical papers on AM will be reviewed and discussed. Students taking this class will be expected to participate actively and bring to the class real or potential applications of AM in their workplaces. Co-listed with EN.510.467
Prerequisite(s): EN.510.601
Area: Engineering, Natural Sciences

EN.510.701. Three-Dimensional Microstructural Characterization of Materials. 3 Credits.
A graduate-level introduction to experimental techniques and data analysis for characterizing the microstructure of materials in three dimensions. Topics to be covered include serial sectioning, principles of optical and scanning-electron microscopy and electron back-scatter diffraction (EBSD), high-energy x-ray diffraction microscopy, and techniques for 3D data reduction, representation, and analysis.
Prerequisite(s): EN.510.601 or Permission of instructor.
Area: Engineering, Natural Sciences

EN.510.801. Materials Research Seminar. 1 Credit.
The Graduate Research Seminar in the Department of Materials Science and Engineering provides a forum for students to present their latest research results in a formal seminar setting. The course encourages discussion between students in varying disciplines in order to establish new collaborations and develop the shared vocabulary required for interdisciplinary materials science research. Permission Required.

EN.510.802. Materials Research Seminar. 1 Credit.

EN.510.803. Materials Science Seminar. 1 Credit.
The Materials Science Seminar exposes students to a wide array of internationally recognized speakers who discuss topics of cutting-edge Materials Science research. Speakers are selected both to overlap research interests within the department and to expose students to broader trends in contemporary Materials Science.

EN.510.804. Materials Science Seminar. 1 Credit.
Meets with EN.510.434, EN.510.439, EN.510.441, EN.510.446, and EN.510.448.

EN.510.807. Graduate Research In Materials Science. 3 - 20 Credits.
Individual programs of study are worked out between students and the professor supervising their independent study project. Topics selected are those not formally listed as regular courses and include a considerable design component.

EN.510.808. Graduate Research. 3 - 20 Credits.

EN.510.809. Graduate Summer Research Course. 9 Credits.
Graduate Summer Research Course

Cross Listed Courses
Biomedical Engineering
EN.580.441. Cellular Engineering. 3 Credits.
This course focuses on principles and applications in cell engineering. Class lectures include an overview of molecular biology fundamentals, protein/ligand binding, receptor/ligand trafficking, cell-cell interactions, cell-matrix interactions, and cell adhesion and migration at both theoretical and experimental levels. Lectures will cover the effects of physical (e.g., shear stress, strain), chemical (e.g., cytokines, growth factors) and electrical stimuli on cell function, emphasizing topics on gene regulation and signal transduction processes. Furthermore, topics in metabolic engineering, enzyme evolution, polymeric biomaterials, and drug and gene delivery will be discussed. This course is intended as Part 1 of a two-semester sequence recommended for students in the Cell and Tissue Engineering focus area. Recommended Course Background: EN.580.221 or AS.020.305 and AS.020.306 or equivalent and AS.030.205 Meets with EN.580.641
Area: Engineering, Natural Sciences

EN.580.442. Tissue Engineering. 3 Credits.
This course focuses on the application of engineering fundamentals to designing biological tissue substitutes. Concepts of tissue development, structure and function will be introduced. Students will learn to recognize the majority of histological tissue structures in the body and understand the basic building blocks of the tissue and clinical need for replacement. The engineering components required to develop tissue-engineered grafts will be explored including biomechanics and transport phenomena along with the use of biomaterials and bioreactors to regulate the cellular microenvironment. Emphasis will be placed on different sources of stem cells and their applications to tissue engineering. Clinical and regulatory perspectives will be discussed. Recommended Course Background: EN.580.221 or AS.020.305 and AS.020.306, AS.030.205 Recommended EN.580.441/EN.580.641 Co-listed with EN.580.642
Area: Engineering, Natural Sciences

EN.580.444. Biomedical Applications of Glycoengineering. 3 Credits.
This course provides an overview of carbohydrate-based technologies in biotechnology and medicine. The course will begin by briefly covering basics of glycobiology and glycochemistry followed by detailed illustrative examples of biomedical applications of glycoengineering. A sample of these applications include the role of sugars in preventative medicine (e.g., for vaccine development and probiotics), tissue engineering (e.g., exploiting natural and engineered polysaccharides for creating tissue or organs de novo in the laboratory), regenerative medicine (e.g., for the treatment of arthritis or degenerative muscle disease), and therapy (e.g., cancer treatment). A major part of the course grade will be based on class participation with each student expected to provide a "journal club" presentation of a relevant paper as well as participate in a team-based project designed to address a current unmet clinical need that could be fulfilled through a glycoengineering approach. Recommended Course Background: EN.580.221 Molecules and Cells.
Area: Engineering, Natural Sciences
Electrical & Computer Engineering
EN.520.627. Photovoltaics and Energy Devices. 3 Credits.
This course provides an introduction to the science of photovoltaics and related energy devices. Topics covered include basic concepts in semiconductor device operation and carrier statistics; recombination mechanisms; p-n junctions; silicon, thin film, and third generation photovoltaic technologies; light trapping; and detailed balance limits of efficiency. Additionally, thermophotovoltaics and electrical energy storage technologies are introduced. A background in semiconductor device physics (EN.520.485, or similar) is recommended.

General Engineering
EN.500.113. Gateway Computing: Python. 3 Credits.
This course introduces fundamental programming concepts and techniques, and is intended for all who plan to develop computational artifacts or intelligently deploy computational tools in their studies and careers. Topics covered include the design and implementation of algorithms using variables, control structures, arrays, functions, files, testing, debugging, and structured program design. Elements of object-oriented programming, algorithmic efficiency and data visualization are also introduced. Students deploy programming to develop working solutions that address problems in engineering, science and other areas of contemporary interest that vary from section to section. Course homework involves significant programming. Attendance and participation in class sessions are expected.

Prerequisite(s): Students may not have earned credit in: EN.500.112 OR EN.500.114 OR EN.510.202 OR EN.530.112 OR EN.530.601 OR EN.601.107 OR EN.500.132 OR EN.500.133 OR EN.500.134.
Area: Engineering

Mechanical Engineering
EN.530.417. Fabricatology - Advanced Materials Processing. 3 Credits.
The “Fabricatology” is a course that students can learn how to make desired shapes, structures, and surfaces across various length scales. It will introduce rich scientific and engineering knowledge related to fabrication at multiple length scales and the generated materials and mechanical systems can be utilized for studying diverse topics including energy harvesting, metamaterials, wetting, and information storage. From this course, students can learn principles and technologies to control shapes at various length scales and processes to control internal structures or surface properties for desired properties/functions. They will be also introduced to exciting recent development in the field so that they can have a comprehensive knowledge about the subject. Recommended Course Background: coursework in introduction to materials chemistry or engineering materials.

Area: Engineering

EN.530.436. Bioinspired Science and Technology. 3 Credits.
Nature has been a source of inspiration for scientists and engineers and it receives particular attention recently to address many challenges the human society encounter. The course will study novel natural materials/structures with unique properties, the underlying principles, and the recent development of the bio-inspired materials and systems. From this course, students can learn about ingenious and sustainable strategies of organisms, open eyes about various phenomena in nature, and get inspiration for opening new directions of science and technology.
Area: Engineering, Natural Sciences

EN.530.445. Introduction to Biomechanics. 3 Credits.
An introduction to the mechanics of biological materials and systems. Both soft tissue such as muscle and hard tissue such as bone will be studied as will the way they interact in physiological functions. Special emphasis will be given to orthopedic biomechanics. Recommended Course Background: EN.530.215/EN.530.216 and Lab or equivalent. If you have not taken this course or an equivalent, please contact the instructor before registering to ensure you have the appropriate background knowledge to succeed in this course.
Area: Engineering

EN.530.604. Mechanical Properties of Materials. 3 Credits.
An introduction to the properties and mechanisms that control the mechanical performance of materials. Topics include mechanical testing, tensor description of stress and strain, isotropic and anisotropic elasticity, plastic behavior of crystals, dislocation theory, mechanisms of microscopic plasticity, creep, fracture, and deformation and fracture of polymers. Recommended Course Background: EN.510.601

Prerequisite(s): Students who have taken EN.510.604 are not eligible to take EN.530.604.

EN.530.618. Fabricatology - Advanced Materials Processing. 3 Credits.
The “Fabricatology” is a course that students can learn how to make desired shapes, structures, and surfaces across various length scales. It will introduce rich scientific and engineering knowledge related to fabrication at multiple length scales and the generated materials and mechanical systems can be utilized for studying diverse topics including energy harvesting, metamaterials, wetting, and information storage. From this course, students can learn principles and technologies to control shapes at various length scales and processes to control internal structures or surface properties for desired properties/functions. They will be also introduced to exciting recent development in the field so that they can have a comprehensive knowledge about the subject. Recommended Course Background: coursework in introduction to materials chemistry or engineering materials.

For current faculty and contact information go to http://materials.jhu.edu/index.php/people/