ENVIRONMENTAL SCIENCES, MINOR

The environmental sciences minor has been developed to encourage and facilitate studies in environmental sciences by students completing degrees in the other science and engineering disciplines. The environmental sciences (ES) minor requires:

• completion of a set of courses in the core sciences,
• two introductory courses dealing with the environment, and
• three or more upper-level environmental sciences courses, as described.

Faculty Advising

A faculty advisor is assigned to each student in the environmental sciences minor program to assist in planning his/her academic program and to approve the choice of courses to satisfy the minor. Faculty advisors are available in the following areas:

• Biological Processes
 Faculty advisor: Sarah Preheim
• Physical Processes
 Faculty advisor: Ciaran Harman
• Environmental Chemistry
 Faculty advisor: Alan Stone
• Environmental Systems
 Faculty advisor: Ben Hobbs

Program Requirements

Core Sciences (ES Minor)

Because of the interdisciplinary nature of environmental science, it is important that professionals from various areas of expertise acquire a common language and set of core concepts to make discussion and cooperation possible. The following courses represent the minimum set of requirements:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS.110.108</td>
<td>Calculus I (Physical Sciences & Engineering)</td>
<td>4</td>
</tr>
<tr>
<td>AS.110.109</td>
<td>Calculus II (For Physical Sciences and Engineering)</td>
<td>4</td>
</tr>
<tr>
<td>AS.110.201</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>AS.110.202</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>AS.110.302</td>
<td>Differential Equations and Applications</td>
<td>4</td>
</tr>
<tr>
<td>EN.553.289</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>EN.553.291</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

At least one of these four courses:

- AS.110.201 Linear Algebra
- AS.110.202 Calculus III
- AS.110.302 Differential Equations and Applications
- EN.553.291 Linear Algebra and Differential Equations

Biology (3 credits)

One course is needed, such as:

- AS.020.151 General Biology I 3

Physics (10 credits)

- AS.171.101 General Physics: Physical Science Major I 4
- or AS.171.107 General Physics for Physical Sciences Majors (AL) 4
- AS.171.102 General Physics: Physical Science Major II 4
- or AS.171.108 General Physics for Physical Science Majors (AL) 4
- AS.173.111 General Physics Laboratory I 1
- AS.173.112 General Physics Laboratory II 1

Pairing Your Major with the ES Minor

Many of the most creative and productive advances in environmental sciences in recent years have come from scientists trained in traditional disciplines (biology, chemistry, geology, physics, and engineering) who have devoted themselves to the study of environmental problems. Completion of the degree requirements of a traditional discipline provides depth and rigor that, when supplemented with additional academic training in environmental science, can be applied to professional work in a variety of environmental subjects, as the following examples show:

Biological Processes

Response of ecosystems to change, microbial degradation of pollutants, biogeochemical cycling of greenhouse gases. **Illustrative majors:** Biology, Biomedical Engineering, Biophysics, Biochemical Engineering.

Environmental Sciences

Students must take two introductory courses dealing with the environment and three or more of the upper-level environmental science courses on the following lists, for a total of 15 credits:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.570.110</td>
<td>Introduction to Engineering for Sustainable Development</td>
<td>6</td>
</tr>
<tr>
<td>EN.570.201</td>
<td>Environmental Biology and Ecology</td>
<td></td>
</tr>
<tr>
<td>EN.570.239</td>
<td>Environmental Engineering Chemistry - Current and Emerging Topics</td>
<td></td>
</tr>
<tr>
<td>AS.270.110</td>
<td>Freshman Seminar: Sustainable + Non-Sustainable Resources</td>
<td></td>
</tr>
<tr>
<td>AS.270.220</td>
<td>The Dynamic Earth: An Introduction to Geology</td>
<td></td>
</tr>
<tr>
<td>AS.270.221</td>
<td>The Dynamic Earth Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Upper-Level Courses (9-10 credits)

Select three of the following:

- EN.570.303 Environmental Engineering Principles and Applications
- EN.570.350 Environmental Hazards and Health Risks
- EN.570.353 Hydrology
- EN.570.411 Engineering Microbiology
- EN.570.441 Environmental Inorganic Chemistry
- EN.570.443 Aquatic and Biofluid Chemistry
- EN.570.445 Physical and Chemical Processes I
- EN.570.491 Hazardous Waste Engineering and Management
- EN.575.706 Biological Processes for Water & Wastewater Treatment
- AS.270.302 Aqueous Geochemistry
- AS.270.350 Sedimentary Geology
- AS.270.369 Geochem Earth/Environmen

Total Credits 15-16
Physical Processes
Erosion of hillslopes, rivers, and coastlines; sediment production, transport, and fate; groundwater, movement of contaminant plumes; oceanography; atmospheric physics; aerosol formation; global warming. **Illustrative majors:** Civil Engineering, Chemical and Biomolecular Engineering, Mechanical Engineering, Physics, Earth and Planetary Sciences.

Environmental Chemistry
Environmental fate of pollutants, water and waste water treatment, geochemistry, atmospheric chemistry, ozone depletion, acid rain. **Illustrative majors:** Chemistry, Chemical and Biomolecular Engineering, Earth and Planetary Sciences, Materials Science and Engineering.

Environmental Systems
Environmental modeling, risk assessment, environmental systems design, pollution control strategies. **Illustrative majors:** Civil Engineering, Applied Mathematics and Statistics.