The following general requirements apply to all M.S.E. students:

- a minimum of 30 graduate credits including no more than 1 credit of seminar, 1 credit of intersession course work or 1.5 credits from CLE (with advisor approval), and 6 credits of independent research counting toward the 30 credits.
- at least 50% of the required 30 credits must come from courses within the department.
- students are permitted to apply up to two classes with a grade of “C” toward their degree.
- 5-6 required courses and 4-5 recommended elective courses depending on concentration (Note: In order to substitute an alternate course for a recommended elective, students must receive written approval from their advisor).
- prerequisites (required) for the M.S.E. program include mathematics: differential equations and computing skills.
- up to two courses from AAP or EP may be taken and counted to receive a master’s degree as long as there is sufficient rigor and prior approval as deemed by the advisor. Students must have written consent from advisor (an email will suffice) prior to signing up for the course.

The M.S.E. program is typically a two semester program based on course work alone. However, M.S.E. students have the option to complete an independent research project, submitted as a formal essay or group project report. An M.S.E. degree with significant research components will usually require three to four semesters for completion and is generally intended for those students planning to work in engineering practice. Each individual’s program of study is planned by the student in consultation with department faculty and must be approved by the faculty advisor. M.S.E. students select from the concentrations below.

M.S.E. Tracks

CONTAMINANT FATE AND TRANSPORT
Emphasizes understanding the physical, chemical, and biological phenomena that affect the movement and transformation of pollutants in the environment.

ENVIRONMENTAL PROCESS ENGINEERING
Involves the analysis and design of processes of water treatment, waste treatment, and environmental remediation, and includes a solid grounding in the chemical, biological, and physical principles underlying treatment and remediation technologies.

WATER RESOURCES ENGINEERING
Combines a solid grounding in environmental fluid mechanics and hydrology with electives in modeling, water development planning, policy, and contaminant fate and transport.

ENVIRONMENTAL MANAGEMENT AND ECONOMICS
Focuses on the use of models of physical and economic systems to analyze and improve the design and operations of public policies, environmental control systems, and infrastructure for energy, transportation, water, and other critical services.

DATA SCIENCE AND ANALYTICS FOR ENVIRONMENTAL HEALTH AND ENGINEERING
Emphasizes innovative computational, statistical, and “big data” tools with applications to environmental problems in air pollution, energy systems, hydrology, and climate change.

Program Requirements

The following general requirements apply to all M.S.E. students:

Tracks for the M.S.E. Degree

CONTAMINANT FATE AND TRANSPORT
This concentration emphasizes understanding of physical, chemical, and biological phenomena that affect the movement and transformation of pollutants in the environment.

- **Core courses:**
 - EN.570.645 Environmental Microbiology
 - EN.570.615 Current Trends in Environmental Microbiology
 - EN.570.641 Environmental Inorganic Chemistry
 - EN.570.643 Aquatic and Biofluid Chemistry
 - EN.570.652 Experimental Methods in Environmental Engineering and Chemistry

- **Recommended electives include:**
 - EN.570.695 Environmental Health and Engineering Systems Design
 - EN.570.697 Risk and Decision Analysis
 - EN.560.601 Applied Math for Engineers

- **One course in applied mathematics, numerical analysis, or engineering mathematics, such as:**
 - EN.570.695 Environmental Health and Engineering Systems Design
 - EN.570.697 Risk and Decision Analysis
 - EN.560.601 Applied Math for Engineers

- **Environmental PROCESS ENGINEERING**
This concentration involves the analysis and design of processes of water treatment, waste treatment, and environmental remediation, and includes a solid grounding in the chemical, biological, and physical principles underlying treatment and remediation technologies.

- **Core courses:**
 - EN.570.643 Aquatic and Biofluid Chemistry
 - EN.570.644 Physical and Chemical Processes
 - EN.570.648 Physical and Chemical Processes II
 - EN.570.652 Experimental Methods in Environmental Engineering and Chemistry
 - EN.575.645 Environmental Microbiology

- **Credits**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.570.645</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>EN.570.615</td>
<td>Current Trends in Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>EN.570.641</td>
<td>Environmental Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EN.570.643</td>
<td>Aquatic and Biofluid Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EN.570.652</td>
<td>Experimental Methods in Environmental Engineering and Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>EN.575.645</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
</tbody>
</table>
Environmental Control Systems

This concentration focuses on using models of physical and economic systems to analyze and improve the design of public policies and environmental control systems.

Water Resources Engineering

This concentration combines a solid grounding in environmental fluid mechanics and hydrology with electives in modeling, water development planning, policy, and contaminant fate and transport.

Data Science and Analytics for EHE

This concentration emphasizes innovative computational, statistical, and “big data” tools with applications to environmental problems in air pollution, energy systems, hydrology, and climate change.

Environmental Management and Economics

This concentration focuses on using models of physical and economic systems to analyze and improve the design of public policies and environmental control systems.
PH.182.613 Exposure Assessment Techniques for Health Risk Management

Advanced Data Science (2 courses)
Students should take two additional courses in statistics, applied match, or computing. Graduate-level courses in the following department will fulfill this requirement: EHE (only Geostatistics fulfills this requirement if not used to fulfill requirements in the Data Science Foundations category), Applied Math and Statistics (e.g., Data Mining, Bayesian Statistics, Seminar in Data Analysis, and other courses), Computer Science (e.g., Parallel Programming, Causal Inference, and other courses), Biostatistics, and Earth & Planetary Sciences (only Inversion Modeling & Data Assimilation or Geoscience Modeling fulfills this requirement).

Data Science Project (3 credits)
This requirement is waived if students are conducting master's thesis research for credit.