ENVIRONMENTAL HEALTH AND ENGINEERING

https://ehe.jhu.edu/

Housed in both the Whiting School of Engineering and Bloomberg School of Public Health, the Department of Environmental Health and Engineering is the only program of its kind, bringing environmental engineering and public health faculty into a single, collaborative department. The overarching goal of the program is to prepare students to tackle the environmental challenges of the 21st century by both identifying existing and emerging environmental issues and developing innovative policy and technical solutions to address these threats to our environment and mankind.

EHE offers three programs of study, within the Whiting School of Engineering, to prepare students for a future in interdisciplinary scientific collaboration:

- an undergraduate program (Bachelor of Science in Engineering),
- a Master’s program with varied tracks, concentrations, and research opportunities, and
- a doctoral degree program.

Drawing from a number of cross-divisional disciplines and approaches, EHE is concerned with identifying, exploring, and ultimately solving environmental problems including (but certainly not limited to):

- air pollution assessment, management and health outcomes
- aquatic chemistry
- bioinformatics
- climate and health
- drinking water, water reuse, and wastewater treatment
- environmental and economic policy, law, and management
- environmental nanotechnology
- energy and water systems
- epidemiology and epigenetics
- microbiology and microbial ecology
- toxicology, physiology, and metabolomics
- evaluation of environmental program impacts
- hazardous and solid waste engineering and management
- hydrology, transport and earth systems
- occupational exposure assessment and health impacts
- particle interaction
- pollutant fate and transport

Interdisciplinary, collaborative practices within our academic programs are necessary in order to most effectively identify and address long-standing, environmental questions and problems. Because of its diversity of interests and association with other departments within the university, EHE is able to offer a broad range of study and research opportunities for both undergraduate and graduate students.

Facilities

Our state of the art labs and facilities are well-equipped for research and study within a vast array of interdisciplinary areas of study. On the Homewood campus, EHE offices and laboratories are located in Ames Hall and at the Stieff Building. In addition to computers for scientific modelling laboratories, EHE has two undergraduate teaching labs and many individual laboratories for environmental engineering and health research. Each lab is equipped with a broad array of state-of-the-art analytical equipment for assessment of biologics and chemicals in water, waste water, and soil.

Extensive computer facilities and high speed computing are available both in the department and the university as a whole for computational and modeling studies.

On the Bloomberg campus, EHE offices and laboratories are located on the 6th and 7th floors of the Public Health building. Laboratories include state-of-the-art equipment and facilities for assessment of hazardous environmental chemicals/toxicants (airborne, waterborne, or foodborne) on human health and the exploration of the physiological, immune, genetic, and/or epigenetic origins of these effects.

Students have access to a broad range of core facilities on both campuses including: Mass Spectrometry and Proteomics, Biostatistics, and Data Management, Computational Biology, Genetics Resource Core, High Throughput Chemical Screening Core, Deep Sequencing and Microarray Cores.

Working with faculty on both campuses, students conduct research in our local, regional, national, and global laboratories and field sites.

Undergraduate Programs

The Department of Environmental Health and Engineering offers:

- an undergraduate Bachelor of Science (B.S.E.) degree in Environmental Engineering
- four focus areas within the environmental engineering major:
 - Environmental Engineering Science
 - Environmental Management and Economics
 - Environmental Transport
 - Environmental Health Engineering
- three minors:
 - a minor in environmental engineering
 - a minor in environmental sciences
 - a minor in engineering for sustainable development
- a five-year combined (B.S./M.S. or B.S./M.S.E.) program.

As part of these minor programs, or as part of other programs of the student’s own design, the department offers electives in such areas as ecology, geomorphology, water and wastewater pollution treatment processes, environmental systems analysis, and environmental policy studies.

Program Objectives

The B.S. in Environmental Engineering degree program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org (http://www.abet.org/).

ABET Program Educational Objectives

The BSEE Program Educational Objectives focus on objectives that our graduates are expected to attain within a few years of graduation. The objectives were reviewed and approved by our external advisory committee in May 2015. The objectives are stated as follows:

The Program in Environment Engineering educates students to think critically, communicate clearly, and collaborate effectively as they apply
the fundamental scientific principles of engineering to environmental problems. We emphasize the importance of intellectual growth, professional ethics, and service to society. Our graduates are prepared to be successful

- engineering professionals in private and governmental organizations, and
- students in the best graduate programs.

Students graduating with a B.S. in Environmental Engineering will have demonstrated:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Annual Student Enrollment and Graduation Data

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>Total Enrolled</th>
<th>Total Graduated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-17</td>
<td>49</td>
<td>12</td>
</tr>
<tr>
<td>2017-18</td>
<td>49</td>
<td>10</td>
</tr>
<tr>
<td>2018-19</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>2019-20</td>
<td>44</td>
<td>4</td>
</tr>
</tbody>
</table>

Continuous Improvement

The Department of Environmental Health and Engineering strives to continuously improve its curriculum by using performance criteria to regularly assess its program educational objectives (what skills it expects its students to demonstrate). The environmental engineering program uses the results of each assessment to continuously improve upon its curriculum and thus ensure that it is meeting the needs of its students.

Our department is noted for our students' exceptionally high pass rate of the "Fundamentals of Engineering" (FE) exam offered by the National Council of Examiners for Engineering and Surveying (NCEES).

Graduate Programs

Because of the department's unique cross-divisional affiliation, EHE is able to offer a wide array of masters and doctoral programs at the intersection of public health and engineering. With programs based both on the Bloomberg School of Public Health's East Baltimore campus and on the Whiting School of Engineering's Homewood campus, our graduate students benefit from expertise that is deep and broad in areas that include the science of chemical, biological and physical processes relevant to environment and health, environmental engineering, environmental and health policy, and data analytics.

Graduates of the department have found jobs in university departments of civil and environmental engineering, economics, biology, chemistry, geography, and geology; in federal, state, and municipal government; in private industry; and in private research and consulting organizations.

Financial Aid

Financial aid is granted on the basis of merit and availability. Criteria for consideration for these awards include academic excellence, professional or research experience, and career commitment to the field. Ph.D. students receive full financial support while in fulltime, resident status. Partial tuition fellowships are offered to qualified master's students.

Furthermore, many students within the department have been awarded graduate research fellowships available to Ph.D. and Masters students through programs administered by the National Science Foundation and the Environmental Protection Agency.

Programs

- Environmental Engineering, Bachelor of Science (https://e-catalogue.jhu.edu/engineering/full-time-residential-programs/degree-programs/environmental-health-engineering/environmental-engineering-bachelor-science/)
- Environmental Engineering, Minor (https://e-catalogue.jhu.edu/engineering/full-time-residential-programs/degree-programs/environmental-health-engineering/environmental-engineering-minor/)
- Environmental Sciences, Minor (https://e-catalogue.jhu.edu/engineering/full-time-residential-programs/degree-programs/environmental-health-engineering/environmental-sciences-minor/)
- Geography and Environmental Engineering, Master of Science (https://e-catalogue.jhu.edu/engineering/full-time-residential-programs/degree-programs/environmental-health-engineering/environmental-health-engineering-master-science/)
- Geography and Environmental Engineering, Master of Science in Engineering (https://e-catalogue.jhu.edu/engineering/full-time-residential-programs/degree-programs/environmental-health-engineering/environmental-health-engineering-master-science-engineering/)
- Geography and Environmental Engineering, PhD (https://e-catalogue.jhu.edu/engineering/full-time-residential-programs/degree-programs/environmental-health-engineering/environmental-health-engineering-phd/)
Courses

EN.570.108. Introduction to Environmental Engineering and Design. 3 Credits.
Overview of environmental engineering including water/air quality issues, water supply/wastewater treatment, hazardous/solid waste management, pollution prevention, global environmental issues, public health considerations/environmental laws, regulations and ethics. Cross-listed with Public Health Studies.
Area: Engineering

EN.570.110. Introduction to Engineering for Sustainable Development. 3 Credits.
Area: Humanities, Social and Behavioral Sciences

EN.570.201. Environmental Biology and Ecology. 3 Credits.
This course will cover basic topics in environmental biology and ecology for environmental engineering majors. The course will begin by describing the basic building blocks of life, cells and cellular components, which are common to all living things. We will then investigate factors that promote multicellularity, plant and animal physiology, and ecological principles that determine the distribution and function of organisms in the ecosystem.
Area: Natural Sciences

EN.570.222. Environment and Society. 3 Credits.
Humans make their living in the environment. How we do that changes nature and changes us. This class explores human impacts on the environment, how we have thought about our relationship to nature over the millennia, and contemporary environmental discourses.
Area: Humanities, Social and Behavioral Sciences

EN.570.239. Environmental Engineering Chemistry - Current and Emerging Topics. 3 Credits.
Students will utilize their chemistry knowledge to understand contemporary environmental issues in various media. Lectures will discuss the chemical phenomena leading to and resulting from air and water pollution issues. Climate change impacts to air and water chemistry will also be covered.
Area: Engineering, Natural Sciences

EN.570.303. Environmental Engineering Principles and Applications. 3 Credits.
Fundamentals and applications of physical, chemical, and biological processes in the natural environment and engineered systems. The first part of this class will cover material balances, chemical equilibrium, chemical kinetics, vapor pressure, dissolution, sorption, acid-base reactions, transport phenomena, reactor design, and water quality. The second part of this class focuses on the principles and design of water and wastewater treatment processes, such as coagulation, sedimentation, filtration, biological treatment processes, and disinfection.
Area: Engineering, Natural Sciences

EN.570.304. Environmental Engineering Laboratory. 3 Credits.
Introduction to laboratory measurements relevant to water supply and wastewater discharge, including pH and alkalinity, inorganic and organic contaminants in water, reactor analysis, bench testing for water treatment, and measurement and control of disinfection by-products. Recommended Course Background: EN.570.210 or Instructor Permission.
Prerequisite(s): EN.570.303.

EN.570.305. Environmental Health and Engineering Systems Design. 4 Credits.
Techniques from systems analysis applied to environmental engineering design and management problems: reservoir management, power plant siting, nuclear waste management, air pollution control, and transportation planning. Design projects are required.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.320. Case Studies in Climate Change - A Field Course. 2 Credits.
In this interdisciplinary seminar class, we will discuss past, present, and future climate change. We will do so through several case studies on California; Eastern California is a hub of research on past climate change, and arguably few states are being more heavily impacted by current climate change than California. Throughout the first half of the course, we will learn how climate has changed in the past, the magnitude of those changes, the possible causes, and the physical and ecological impacts of past climate change. In the second half of the course, we will contrast past climate change with the impacts and severity of contemporary climate change. We will explore how climate change is stressing water resources, air quality, and ecological resilience across California, and we will critically evaluate how the state's recent policy initiatives are ameliorating (or exacerbating) these stresses. This course has a 2-credit co-requisite in the spring semester where we will travel to Eastern California for a week-long field trip. Please email the instructor if you are interested in this course (smill191@jhu.edu) for more details on the co-requisite spring field trip.

EN.570.334. Engineering Microeconomics. 3 Credits.
This course uses a calculus-based approach to introduce principles of engineering economics and microeconomics (demand and production theory) and their uses in engineering decision making. Recommended Course Background: AS.110.202
Area: Quantitative and Mathematical Sciences, Social and Behavioral Sciences

EN.570.349. Water quality of rivers, lakes, and estuaries. 3 Credits.
Sustainably managing aquatic environments for ecosystem and public health in a changing climate requires us to understand the combined effect of multiple physical, chemical, and biological processes. This class will equip students to apply their understanding of environmental engineering principles to real-world water quality issues using computer simulation models. Emphasis will be placed on gaining insight by understanding fundamental assumptions and equations, and application to classical problems of oxygen demand and eutrophication. Advanced topics including pathogen and toxin dynamics will also be introduced.
Prerequisite(s): EN.570.303
Area: Engineering, Natural Sciences
EN.570.350. Environmental Hazards and Health Risks. 3 Credits.
This course explores the concepts, assessment, and control of exposure to biological, physical and chemical hazards in the environment, the risk of adverse health outcomes resulting from such exposures, and the relationship between the exposures and health outcomes. These are placed in the context of the multi-disciplinary scientific field of environmental health as an essential component of the wider field of public health. The course is comprised of lectures, examples, group discussions, and group presentations. The proposed course will fill a gap in content and skill development in the issues and techniques relating to human health risk assessment. This course is targeted toward undergraduates who may not have had any exposure to environmental health science, and provides an introduction to environmental health using the framework of health risk assessment. The course first introduces the concepts of exposure to environmental hazards and biological dose, routes of exposure, statistical characterization of exposure variability in populations, and monitoring networks. The next set of concepts relate to hazard characterization, i.e., adverse health outcomes resulting from such exposures using a variety of types of data including in vitro and in vivo studies, and human epidemiological studies and their strengths and weaknesses. The next segment will deal with the quantitative characterization of the relationship between exposure/dose and the adverse health outcomes, i.e., the dose-response relationships, the metrics used for this, and quantitatively characterizing the health risks of a population. The course will introduce students to several tools including mathematical modeling of exposures and risk, and uncertainty analysis.
Prerequisite(s): (AS.171.101 AND AS.171.102) AND (AS.030.101 AND AS.030.102) AND (AS.110.109 AND AS.110.109)
Area: Engineering, Natural Sciences

EN.570.351. Introduction to Fluid Mechanics. 3 Credits.
Introduction to the use of the principles of continuity, momentum, and energy to fluid motion. Topics include hydrostatics, ideal-fluid flow, laminar flow, turbulent flow. Recommended Course Background: Statics, Dynamics, and AS.110.302
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering

EN.570.353. Hydrology. 3 Credits.
The occurrence, distribution, movement, and properties of the waters of the Earth. Topics include precipitation, infiltration, evaporation, transpiration, groundwater, and streamflow. Analyzes include the frequency of floods and droughts, time-series analyzes, flood routing, and hydrologic synthesis and simulation. Recommended Course Background: AS.110.302, EN.570.351
Area: Engineering

EN.570.406. Environmental History. 3 Credits.
Environmental history explores the interactions between social change and environmental transformation, or the ways in which societies modify landscapes and are themselves affected by geological, climatological and changing ecological conditions. Topics include the relationship between climate change and human evolution, the environmental impacts of market-based commodity production and regional economic specialization; the relationship between urbanization and environmental change; how warfare affects and is affected by environmental conditions.
Area: Humanities, Social and Behavioral Sciences
Writing Intensive

EN.570.411. Engineering Microbiology. 4 Credits.
Fundamental aspects of microbiology and biochemistry as related to environmental pollution and water quality control processes, biogeochemical cycles, microbiological ecology, energetics and kinetics of microbial growth, and biological fate of pollutants.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering, Natural Sciences

EN.570.412. Landscape Hydrology and Watershed Analysis. 3 Credits.
The purpose of this class is to understand the landscape-scale controls on the fluxes of water and waterborne materials through watersheds. This class differs from the Hydrology and Hydrologic Modeling classes in its focus on data analysis, and its embrace of the complexity of real landscapes. There will be significant quantitative components to the material taught, but emphasis will be on developing a greater sense of the way that landscapes "function", and how this function is related to real-world issues of water resources and pollution. Students will gain an understanding of how climate, geologic and ecologic setting, and human impacts control the partitioning of water between different fates, the flowpaths through the landscape and the storage and residence time of water. They will also learn conceptual and practical tools for analyzing hydrologic and other landscape data, and integrating this data in a holistic approach to watershed analysis. The class will be of interest for students intending to go into watershed or landscape management, and anyone wishing to pursue research in hydrology, geomorphology or ecology at landscape and watershed scales. The class will include at least one field trip to an instrumented watershed. GIS skills will be an advantage but are not required.

EN.570.415. Current Trends in Environmental Microbiology. 3 Credits.
This course will highlight recent discoveries and advances in environmental microbiology such as the identification of novel microbes, changing paradigms in nitrogen cycling, single-cell activity methods and novel methods in microbial community analysis. We will explore these topics by reading and discussing the current literature, supported by short lectures and in class activities related to the topics. Background in microbiology or microbial ecology is recommended. This course will meet with EN.570.615.
Area: Engineering, Natural Sciences
EN.570.416. Data Analytics in Environmental Health and Engineering. 3 Credits.
Data analytics is a field of study involving computational statistics, data mining and machine learning, to explore data sets, explain phenomena and build predictive models. The course begins with an overview of some traditional analysis approaches including ordinary least squares regression and related topics, notably diagnostic testing, detection of outliers and methods to impute missing data. More recent developments are presented, including ridge regression. Generalized linear models follow, emphasizing logistic regression and including models for polytomous data. Variable subseting is addressed through stepwise procedures and the LASSO. Supervised machine learning topics include the basic concepts of boosting and bagging and several techniques: Decision Trees, Classification and Regression Trees, Random Forests, Conditional Random Forests, Adaptive Boosting, Support Vector Machines and Neural Networks. Unsupervised machine learning approaches are addressed through applications using k-means Clustering, Partitioning Around Medoids and Association Rule Mining. Methods for assessing model predictive performance are introduced including Confusion Matrices, k-fold Cross-Validation and Receiver Operating Characteristic Curves. Public health and environmental applications are emphasized, with modeling techniques and analysis tools implemented in R.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.419. Environmental Engineering Design I. 2 Credits.
Through general lectures and case study examples, this course will expose students to some of the non-technical professional issues that they will face as professional engineers and in their second-semester senior design project.
Area: Engineering

EN.570.420. Air Pollution. 3 Credits.
The course consists of an introduction to the fundamental concepts of air pollution. Major topics of concern are aspects of atmospheric motion near the earth's surface; basic thermodynamics of the atmosphere; atmospheric stability and turbulence; equations of mean motion in turbulent flow; mean flow in the surface boundary layer; mean flow; turbulence in the friction layer; diffusion in the atmosphere; statistical theory of turbulence; plume rise. Emphasis is placed upon the role and utility of such topics in a systems analysis context, e.g., development of large and mesoscale air pollution abatement strategies. Comparisons of the fundamental concepts common to both air and water pollution are discussed. This course meets with EN.570.657, Air Pollution.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.421. Environmental Engineering Design II. 3 Credits.
Engineering design process from problem definition to final design. Team projects include written/oral presentations. Students will form small teams that work with local companies or government agencies in executing the project. Recommended Course Background: EN.570.303, EN.570.352, and EN.570.419
Area: Engineering

EN.570.422. Resilience of Ecological Systems. 3 Credits.
The ability of ecosystems to recover from natural events and human actions is increasingly being threatened by climate change and its ramifications. This course is a study of ecosystems using mathematical models, with a particular focus on quantifying their resilience. We will model a number of ecosystems, including rainforests, lakes, temperate forests, savannas, and grasslands. We will analyze ecological phenomena that impact public health and commerce. These include lake eutrophication and anoxia, forest fires, and insect outbreaks. Additionally, this course will also discuss mathematical models to study the spread and control of pandemics such as Covid-19. In all cases, potential pro-active and reactive management and control approaches will be evaluated. Mathematical techniques will be introduced and developed in a context-sensitive manner. This course is open to undergraduate and graduate students. Recommended course background (i.e. potentially useful but not required): EN.553.291 or AS.110.302, or equivalent.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.428. Problems in Applied Economics. 3 Credits.
This course focuses on a monetary approach to national income determination and the balance of payments. Money and banking, as well as commodity and financial markets, are dealt with under both central banking, as well as alternative monetary regimes. Particular emphasis is placed on currency board systems. Students learn how to properly conduct substantive economic research, utilizing primary data sources, statistical techniques and lessons from economic history. Findings are presented in the form of either memoranda or working papers of publishable quality. Exceptional work may be suitable for publication through the Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise. Advanced excel programming skills are required and students are expected to be pre-screened for research at the Library of Congress in Washington, D.C.. Bloomberg certification is a pre-requisite.
Prerequisite(s): EN.660.203 AND AS.180.101 AND AS.180.102
Area: Social and Behavioral Sciences
Writing Intensive

EN.570.429. Methods in Microbial Community Analysis. 3 Credits.
This course will provide a practical knowledge of molecular methods used to identify microorganisms present with a sample and gain insight into their function and dynamics. It will provide theoretical background into how to identify microorganisms and infer functional capabilities from genetic material, practical knowledge of common molecular methods and computational skills needed to analyze the resulting sequence data. No background in molecular biology, computation or microbiology is necessary. Course objectives include (1) understanding key aspects of microbial community composition from literature reports; (2) recognizing major microbial taxonomic groups and understanding phylogenetic relationships; (3) developing molecular biology lab skills required to create gene amplicon libraries from an aquatic samples; (4) working knowledge of statistical methods used to associate taxonomic and functional gene information with specific environmental conditions. Recommended Course Background: Microeconomics, Introductory Statistics, Optimization.Open to undergraduates. Co-listed with EN.570.619
Area: Engineering, Quantitative and Mathematical Sciences
EN.570.441. Environmental Inorganic Chemistry. 3 Credits.
Advanced undergraduate/graduate course that explores the chemical transformations of elements of the periodic table. Thermodynamic, kinetic, and mechanistic tools needed to address the multiple chemical species and interfaces that are present in natural waters and water-based technological processes are emphasized. Ligand exchange, metal ion exchange, adsorption/desorption, precipitation/dissolution, electron and group transfer reactions, and other concepts from coordination chemistry will be covered. Applications include elemental sources and sinks in ocean waters, reactive transport in porous media, weathering and soil genesis, nutrient and toxic element uptake by organisms, water treatment chemistry, and rational design of synthetic chemicals. Co-listed with EN.570.641
Area: Natural Sciences

EN.570.442. Environmental Organic Chemistry. 3 Credits.
Advanced undergraduate/graduate course focusing on examination of processes that affect the behavior and fate of anthropogenic organic contaminants in aquatic environments. Students learn to predict chemical properties influencing transfers between hydrophobic organic chemicals, air, water, sediments, and biota, based on a fundamental understanding of intermolecular interactions and thermodynamic principles. Recommended Course Background: AS.030.104 or permission required.
Area: Engineering, Natural Sciences

EN.570.443. Aquatic and Biofluid Chemistry. 3 Credits.
Equilibrium speciation of natural waters, biofluids, and engineered systems. Topics include acids, bases, pH, and buffering; the precipitation and dissolution of solids; complexation and chelation; oxidation and reduction reactions; regulation and design. Intended for students from a variety of backgrounds. Recommended Course Background: One year of both Chemistry and Calculus. Meets with EN.570.643 (Aquatic and Biofluid Chemistry).
Area: Engineering, Natural Sciences

EN.570.444. Physical and Chemical Processes I. 3 Credits.
The application of basic physical and chemical concepts to the analysis of environmental engineering problems. Principles of chemical equilibrium and reaction, reaction engineering, interphase mass transfer, and adsorption are presented in the context of process design for unit operations in common use for water and wastewater treatment. Topics addressed include mass balances, hydraulic characteristics of reactors, reaction kinetics and reactor design, gas transfer processes (including both fundamentals of mass transfer and design analysis), and adsorption processes (including both fundamentals of adsorption and design analysis).
Prerequisite(s): EN.570.303 or permission of instructor.
Area: Engineering

EN.570.445. Biological Process of Wastewater Treatment. 3 Credits.
Fundamentals and application of aerobic and anaerobic biological unit processes for the treatment of municipal and industrial wastewater. Recommended Course Background: EN.570.411
Area: Engineering, Natural Sciences

EN.570.446. Physical and Chemical Processes II. 3 Credits.
Fundamentals and applications of physical and chemical processes used in water and wastewater treatment. This class will cover particle interactions, coagulation, flocculation, granular media filtration, membrane processes, and emerging water treatment processes. Recommended Course Background: EN.570.445 or Permission Required.
Area: Engineering

EN.570.449. Social Theory for Engineers. 3 Credits.
Engineers work in a social context. This course addresses a number of questions about that social context. How should we understand how societies come about, how they evolve, and why the rules of the game are what they are? What is the relationship between the individual and society, what does it mean to be ‘modern,’ are there different forms of rationality? How might all this impinge on what it means to be an engineer?
Area: Humanities, Social and Behavioral Sciences
Writing Intensive

EN.570.451. Environmental Dispersion and Transport. 3 Credits.
The course will provide an overview of the basic foundations of transport and dispersion phenomena in the environment (surface water, groundwater, ocean and atmosphere). The emphasis will be on mathematical formulation of transport equations, analytical solutions, physical insights, methods of analysis of concentration data. The course will cover classical advection-diffusion concepts, shear dispersion phenomena, and transport in random velocity fields with applications to turbulent diffusion and macrodispersion in groundwater. Although numerical modeling is not the primary objective of the course, we will build a simple computational toolbox using random-walk particle tracking to visualize and quantify transport processes. Computation of analytical solutions will require MATLAB or python (or equivalent programming, although EXCEL may also suffice with macros). If time permits, we will touch upon reactive transport and non-Fickian transport formulations. Recommended course background in EN.553.291 Linear Algebra and Differential Equations and EN.570.351 Fluid Mechanics.
Area: Engineering, Natural Sciences

EN.570.452. Experimental Methods in Environmental Engineering and Chemistry. 4 Credits.
An advanced laboratory covering principles of modern analytical techniques and their applications to problems in environmental sciences. Topics include electrochemistry, spectrometry, gas and liquid chromatography. The course is directed to graduate students and advanced undergraduates in engineering and natural sciences. Co-listed with EN.570.652
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module. EN.570.443
Area: Engineering, Natural Sciences
Writing Intensive
EN.570.454. Geostatistics: Understanding Spatial Data. 3 Credits.
Spatial and geographic datasets are becoming increasingly common with improvements in data collection technologies. For example, satellites are able to collect more and more types of earth/environmental data, and web technologies (e.g., social media and e-commerce) provide vast new datasets on social, economic, and public health phenomena. However, many common statistical tools are ill-suited to spatial datasets; these datasets often exhibit complex spatial (and temporal) dependencies that require a special set of tools. In this course, students will learn how to quantitatively analyze, model, and predict spatial and spatiotemporal phenomena. Topics will include quantifying the spatial and temporal properties of data, interpolation and prediction, multivariate models, modeling uncertainty, measurement design, and strategies for very large datasets. We will draw examples from a wide variety of academic disciplines, including environmental engineering, earth science, public health, and political science. Pre-requisites: An introductory course in statistics is recommended. Knowledge of a scientific programming language (e.g., Matlab, R, or Python) will also be helpful.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.470. Applied Economics & Finance. 3 Credits.
This course focuses on company valuations, using a Probabilistic Discounted Cash Flow Model. Students use the model and primary data from financial statements filed with the Securities and Exchange Commission to calculate the value of publically-traded companies. Using Monte Carlo simulations, students also generate forecast scenarios, project likely share-price ranges and assess potential gains/losses. Stress is placed on using these simulations to diagnose the subjective market expectations contained in current objective market prices, and the robustness of these expectations. During the weekly seminar, students company valuations are reviewed and critiqued. A heavy emphasis is placed on research and writing. Exceptional work may be suitable for publication through the Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise. Advanced excel programming skills are required and students are expected to be pre-screened for research at the Library of Congress in Washington, D.C.. Bloomberg certification is a pre-requisite.
Prerequisite(s): EN.660.203 AND (EN.570.428 OR AS.360.528)
Area: Quantitative and Mathematical Sciences, Social and Behavioral Sciences
Writing Intensive

EN.570.490. Solid Waste Engineering and Management. 3 Credits.
This course covers advanced engineering and scientific concepts and principles applied to the management of municipal solid waste (MSW) to protect human health and the environment and the conservation of limited resources through resource recovery and recycling of waste material.
Area: Engineering

EN.570.491. Hazardous Waste Engineering and Management. 3 Credits.
This course addresses traditional and innovative technologies, concepts, and principles applied to the management of hazardous waste and site remediation to protect human health and the environment. Co-listed with EN.570.691
Area: Engineering

EN.570.492. Wolman Seminar - Undergraduates. 1 Credit.
Undergraduates only with permission of instructor.

EN.570.496. Urban and Environmental Systems. 3 Credits.
The mathematical techniques learned in EN.570.305 and EN.570.495 are applied to realistic problems in urban and environmental planning and management. Examples of such problems include the siting of public-sector and emergency facilities; natural areas management, protection and restoration; solid waste collection, disposal, and recycling; public health; the planning and design of energy and transportation systems; and cost allocation in environmental infrastructure development.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.497. Risk and Decision Analysis. 3 Credits.
This class introduces the decision analysis approach to making decisions under risk and uncertainty. Topics covered include decision trees, Bayes law, value of information analysis, elicitation of subjective probabilities, multiattribute utility, and their applications to environmental and energy problems. Textbook: R.T. Clemen, Making Hard Decisions, 2014. Recommended Course Background: introductory statistics and probability.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.501. Undergraduate Research. 1 - 3 Credits.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration & Online Forms.

EN.570.502. Undergraduate Research. 1 - 3 Credits.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration & Online Forms.

EN.570.504. Financial Market Research. 3 Credits.
This course investigates the workings of financial, foreign exchange, and commodity futures markets. Research is focused on price behavior, speculation, and hedging in these markets. Extensive research and writing of publishable quality are required. Exceptional work may be suitable for publication through the Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise. An approved research proposal is a pre-requisite.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration & Online Forms.

EN.570.505. Undergraduate Independent Study. 3 Credits.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration & Online Forms.

EN.570.511. Group Undergraduate Research. 3 Credits.
This section has a weekly research group meeting that students are expected to attend.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration & Online Forms.

EN.570.590. Internship - Summer. 1 Credit.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration & Online Forms.

EN.570.597. Undergraduate Research-Summer. 3 Credits.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration & Online Forms.
EN.570.607. Energy Policy and Planning Models. 3 Credits.
Methods for optimizing operation and design of energy systems and for analyzing market impacts of energy and environmental policies are reviewed, emphasizing both theory and solution of actual models. Review of linear and nonlinear programming and complementarity methods for market simulation. Recommended Course Background: EN.570.493 and EN.570.495 or equivalent.

EN.570.610. Engineering Microbiology. 4 Credits.
Fundamental aspects of microbiology and biochemistry as related to environmental pollution and water quality control processes, biogeochemical cycles, microbiological ecology, energetics and kinetics of microbial growth, and biological fate of pollutants.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 455083 in the Search box to locate the appropriate module.
Area: Engineering, Natural Sciences

EN.570.615. Current Trends in Environmental Microbiology. 3 Credits.
This course will highlight recent discoveries and advances in environmental microbiology such as the identification of novel microbes, changing paradigms in nitrogen cycling, single-cell activity methods and novel methods in microbial community analysis. We will explore these topics by reading and discussing the current literature, supported by short lectures and in class activities related to the topics. Background in microbiology or microbial ecology is recommended. This course will meet with EN.570.415
Area: Engineering, Natural Sciences

EN.570.616. Data Analytics in Environmental Health and Engineering. 3 Credits.
Data analytics is a field of study involving computational statistics, data mining and machine learning, to explore data sets, explain phenomena and build predictive models. The course begins with an overview of some traditional analysis approaches including ordinary least-squares regression and related topics, notably diagnostic testing, detection of outliers and methods to impute missing data. More recent developments are presented, including ridge regression. Generalized linear models follow, emphasizing logistic regression and including models for polytomous data. Variable subset is addressed through stepwise procedures and the LASSO. Supervised machine learning topics include the basic concepts of boosting and bagging and several techniques: Decision Trees, Classification and Regression Trees, Random Forests, Conditional Random Forests, Adaptive Boosting, Support Vector Machines and Neural Networks. Unsupervised machine learning approaches are addressed through applications using k-means Clustering, Partitioning Around Medoids and Association Rule Mining. Methods for assessing model predictive performance are introduced including Confusion Matrices, k-fold Cross-Validation and Receiver Operating Characteristic Curves. Public health and environmental applications are emphasized, with modeling techniques and analysis tools implemented in R. EN.570.616 meets with EN.570.416. Undergraduate (usually Senior) students should sign up for 416 with permission of instructor only.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.619. Methods in Microbial Community Analysis. 3 Credits.
This graduate level course will provide a practical knowledge of molecular methods used to identify microorganisms present with a sample and gain insight into their function and dynamics. It will provide theoretical background into how to identify microorganisms and infer functional capabilities from genetic material, practical knowledge of common molecular methods and computational skills needed to analyze the resulting sequence data. No background in molecular biology, computation or microbiology is necessary. Course objectives include (1) understanding key aspects of microbial community composition from literature reports; (2) recognizing major microbial taxonomic groups and understanding phylogenetic relationships; (3) developing molecular biology lab skills required to create gene amplicon libraries from an aquatic samples; (4) working knowledge of statistical methods used to associate taxonomic and functional gene information with specific environmental conditions. Recommended Course Background: Microeconomics, Introductory Statistics, Optimization. Co-listed with EN.570.429

EN.570.631. Collaborative Modeling for Resolving Water Resources Disputes. 3 Credits.
Overview of collaborative modeling in water resources, Economic issues in water resources disputes, Legal issues in water resources disputes, Biological/Environmental issues in water resources disputes, Water management in the Delaware Basin, Understanding and using the Delaware River Basin Commission's water management tool (an OASIS based model of the Delaware, Multi-objective water management, Understanding management trade-offs, Collaborative processes, Reality based negotiation skills, and Consensus building. Recommended Course Background: A strong interest in utilizing scientific tools to help resolve real-world disputes A background in general science – with at least two of the following disciplines: Biology, chemistry, physics, earth science, economics.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.641. Environmental Inorganic Chemistry. 3 Credits.
Advanced undergraduate/graduate course that explores the chemical transformations of elements of the periodic table. Thermodynamic, kinetic, and mechanistic tools needed to address the multiple chemical species and interfaces that are present in natural waters and water-based technological processes are emphasized. Ligand exchange, metal ion exchange, adsorption/desorption, precipitation/dissolution, electron and group transfer reactions, and other concepts from coordination chemistry will be covered. Applications include elemental sources and sinks in ocean waters, reactive transport in porous media, weathering and soil genesis, nutrient and toxic element uptake by organisms, water treatment chemistry, and rational design of synthetic chemicals. Co-listed with EN.570.441
Area: Natural Sciences

EN.570.642. Environmental Organic Chemistry. 3 Credits.
Advanced undergraduate/graduate course focusing on examination of processes that affect the behavior and fate of anthropogenic organic contaminants in aquatic environments. Students learn to predict chemical properties influencing transfers between hydrophobic organic chemicals, air, water, sediments, and biota, based on a fundamental understanding of intermolecular interactions and thermodynamic principles. Recommended Course Background: AS.030.104 or permission required.
Area: Engineering, Natural Sciences
EN.570.643. Aquatic and Biofluid Chemistry. 3 Credits.
Equilibrium speciation of natural waters, biofluids, and engineered systems. Topics include acids, bases, pH, and buffering; the precipitation and dissolution of solids; complexation and chelation; oxidation and reduction reactions; regulation and design. Intended for students from a variety of backgrounds. Recommended Course Background: One year of both Chemistry and Calculus. Meets with EN.570.443 (Aquatic and Biofluid Chemistry)
Area: Engineering, Natural Sciences

EN.570.644. Physical and Chemical Processes. 3 Credits.
The application of basic physical and chemical concepts to the analysis of environmental engineering problems. Principles of chemical equilbrium and reaction, reaction engineering, interphase mass transfer, and adsorption are presented in the context of process design for unit operations in common use for water and wastewater treatment. Topics addressed include mass balances, hydraulic characteristics of reactors, reaction kinetics and reactor design, gas transfer processes (including both fundamentals of mass transfer and design analysis), and adsorption processes (including both fundamentals of adsorption and design analysis).
Area: Engineering

EN.570.647. Hydrologic Transport in the Environment. 3 Credits.
This course considers the transport of solutes and sediments by water through terrestrial landscapes, with an emphasis on the movement of nutrients and contaminants from the landscape into receiving water bodies like rivers, lakes and estuaries. The course will cover the theoretical approaches (advection-diffusion/dispersion, transit time distributions), the use of active and passive tracers to infer transport processes, analysis of water quality time series, runoff generation and flow pathways in watersheds, and the effect of climate variability on transport. Assessment is based on a semester project and in-class presentations. Seniors interested in joining the class must have Hydrology 570.353 and should contact the instructor.
Area: Engineering, Natural Sciences

EN.570.648. Physical and Chemical Processes II. 3 Credits.
Fundamentals and applications of physical and chemical processes used in water and wastewater treatment. This class will cover particle interactions, coagulation, flocculation, granular media filtration, membrane processes, and emerging water treatment processes. Recommended Course Background: EN.570.445 or Permission Required.
Area: Engineering

EN.570.649. Water quality of rivers, lakes, and estuaries. 3 Credits.
Sustainably managing aquatic environments for ecosystem and public health in a changing climate requires us to understand the combined effect of multiple physical, chemical, and biological processes. This class will equip students to apply their understanding of environmental engineering principles to real-world water quality issues using computer simulation models. Emphasis will be placed on gaining insight by understanding fundamental assumptions and equations, and application to classical problems of oxygen demand and eutrophication. Advanced topics including pathogen and toxin dynamics will also be introduced. Students should have taken EN.570.303 (or equivalent).
Area: Engineering, Natural Sciences

EN.570.650. Seminar on Critical Zone Science. 1 Credit.
Seminar class covering foundational literature and current research in soils, geomorphology, hydrology, ecology, geochemistry, biogeochemistry, and related topics. Each semester will focus on a particular theme. The course is pass-fail, with attendance and engagement required, as well as minimal writing assignments intended to encourage critical thinking.
Area: Engineering, Natural Sciences

EN.570.651. Environmental Transport and Dispersion. 3 Credits.
The course will provide an overview of the basic foundations of transport and dispersion phenomena in the environment (surface water, groundwater, ocean and atmosphere). The emphasis will be on mathematical formulation of transport equations, analytical solutions, physical insights, methods of analysis of concentration data. The course will cover classical advection-diffusion concepts, shear dispersion phenomena, and transport in random velocity fields with applications to turbulent diffusion and macrodispersion in groundwater. Although numerical modeling is not the primary objective of the course, we will build a simple computational toolbox using random-walk particle tracking to visualize and quantify transport processes. Computation of analytical solutions will require MATLAB or python (or equivalent programming, although EXCEL may also suffice with macros). If time permits, we will touch upon reactive transport and non-Fickian transport formulations. Recommended course background in EN.553.291 Linear Algebra and Differential Equations and EN.570.351 Fluid Mechanics.
Area: Engineering, Quantitative and Mathematical Sciences

EN.570.652. Experimental Methods in Environmental Engineering and Chemistry. 4 Credits.
An advanced laboratory covering principles of modern analytical techniques and their applications to problems in environmental sciences. Topics include electrochemistry, spectrometry, gas and liquid chromatography. The course is directed to graduate students and advanced undergraduates in engineering and natural sciences. Co-listed with EN.570.452
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.;EN.570.443 OR EN.570.643 OR permission of instructor.
Area: Engineering, Natural Sciences
Writing Intensive

EN.570.653. Hydrology. 3 Credits.
The occurrence, distribution, movement, and properties of the waters of the Earth. Topics include precipitation, infiltration, evaporation, transpiration, groundwater, and streamflow. Analyzes include the frequency of floods and droughts, time-series analyzes, flood routing, and hydrologic synthesis and simulation. Recommended Course Background: AS.110.302, EN.570.351
Area: Engineering

EN.570.654. Geostatistics: Understanding Spatial Data. 3 Credits.
Spatial and geographic datasets are becoming increasingly common with improvements in data collection technologies. For example, satellites are able to collect more and more types of earth/environmental data, and web technologies (e.g., social media and e-commerce) provide vast new datasets on social, economic, and public health phenomena. However, many common statistical tools are ill-suited to spatial datasets; these datasets often exhibit complex spatial (and temporal) dependencies that require a special set of tools. In this course, students will learn how to quantitatively analyze, model, and predict spatial and spatiotemporal phenomena. Topics will include quantifying the spatial and temporal properties of data, interpolation and prediction, multivariate models, modeling uncertainty, measurement design, and strategies for very large datasets. We will draw examples from a wide variety of academic disciplines, including environmental engineering, earth science, public health, and political science. Prerequisites: An introductory course in statistics is recommended. Knowledge of a scientific programming language (e.g., Matlab, R, or Python) will also be helpful.
Area: Engineering, Quantitative and Mathematical Sciences
EN.570.657. **Air Pollution. 3 Credits.**
The course consists of an introduction to the fundamental concepts of air pollution. Major topics of concern are aspects of atmospheric motion near the earth's surface; basic thermodynamics of the atmosphere; atmospheric stability and turbulence; equations of mean motion in turbulent flow; mean flow in the surface boundary layer; mean flow; turbulence in the friction layer; diffusion in the atmosphere; statistical theory of turbulence; plume rise. Emphasis is placed upon the role and utility of such topics in a systems analysis context, e.g., development of large and mesoscale air pollution abatement strategies. Comparisons of the fundamental concepts common to both air and water pollution are discussed.

Area: Engineering, Quantitative and Mathematical Sciences

EN.570.690. **Solid Waste Engineering and Management. 3 Credits.**
This course covers advanced engineering and scientific concepts and principles applied to the management of municipal solid waste (MSW) to protect human health and the environment and the conservation of limited resources through resource recovery and recycling of waste material.

Area: Engineering

EN.570.691. **Hazardous Waste Engineering and Management. 3 Credits.**
This course addresses traditional and innovative technologies, concepts, and principles applied to the management of hazardous waste and sit remediation to protect human health and the environment.

Area: Engineering

EN.570.695. **Environmental Health and Engineering Systems Design. 3 Credits.**
A collection of systems analytic techniques which are frequently used in the study of public decision making is presented. Emphasis is on mathematical programming techniques. Primarily linear programming, integer and mixed-integer programming, and multiobjective programming. Recommended Course Background: AS.110.106-AS.110.107/AS.110.109

Area: Engineering, Quantitative and Mathematical Sciences

EN.570.696. **Urban and Environmental Systems. 3 Credits.**
The mathematical techniques learned in EN.570.305 and EN.570.495 are applied to realistic problems in urban and environmental planning and management. Examples of such problems include the siting of public-sector and emergency facilities; natural areas management, protection and restoration; solid waste collection, disposal, and recycling; public health; the planning and design of energy and transportation systems; and cost allocation in environmental infrastructure development.

Area: Engineering, Quantitative and Mathematical Sciences

EN.570.697. **Risk and Decision Analysis. 3 Credits.**
This class introduces the decision analysis approach to making decisions under risk and uncertainty. Topics covered include decision trees, Bayes law, value of information analysis, elicitation of subjective probabilities, multiattribute utility, and their applications to environmental and energy problems. Textbook: R.T. Clemen, Making Hard Decisions, 2014. Recommended Course Background: introductory statistics and probability.

Area: Engineering, Quantitative and Mathematical Sciences

EN.570.800. **Graduate Independent Study. 1 - 3 Credits.**

EN.570.801. **Doctoral Research. 3 - 20 Credits.**

Area: Engineering, Natural Sciences

EN.570.803. **Master's Research. 3 - 10 Credits.**

Area: Engineering

EN.570.805. **Jensen Internship. 3 Credits.**
Restricted internship; reserved for students who have received the Jensen Fellowship.

EN.570.841. **Wolman Seminar- Graduates. 1 Credit.**

EN.570.850. **Graduate Independent Study. 1 - 3 Credits.**

EN.570.873. **Environmental Science & Management Seminar. 1 Credit.**

EN.570.881. **Environmental Engineering Seminar. 1 Credit.**

EN.570.885. **Environmental Science & Management Seminar. 1 Credit.**

EN.570.887. **Environmental Science & Management Seminar. 1 Credit.**

EN.570.889. **Environmental Science & Management Seminar. 1 Credit.**

PH.180.601. **Environmental Health. 5 Credits.**
Weaves a tapestry of how environment impacts human health by examining specific health issues, exploring the scientific understanding of causes, and possible future approaches to control the major environmental health problems in industrialized and developing countries. Highlights both case-studies and detailed lectures on topics including aspects of atmospheric motion; industrial pollution; physical, chemical, and biological agents of environmental contamination; vectors for dissemination (air, water, soil); solid and hazardous waste; susceptible populations; biomarkers and risk analysis; the scientific basis for policy decisions; and emerging global environmental health problems.

Course location and modality is found on the JHSPH website (https://www.jhsphs.edu/courses/).

PH.180.602. **Environment and Health in Low and Middle income Countries. 2 Credits.**
Introduces students to how environmental health hazards can affect human health in low and middle income settings. The core concepts are: exposure assessment, environmental epidemiology, and risk communication. Topics include: heavy metals, water sanitation and hygiene, waterborne and related diseases, tropical diseases, energy resources and health, and air pollution.

Course location and modality is found on the JHSPH website (https://www.jhsphs.edu/courses/).
PH.180.603. BAYESIAN DECISION ANALYSIS AND MATHEMATICAL MODELS IN OCCUPATIONAL AND ENVIRONMENTAL EXPOSURE ASSESSMENT. 2 Credits.

Provides tools for applying the Bayesian framework for decision analysis. Explores, through discussion and exercises, opportunities for its application in occupational and environmental hygiene data interpretation and exposure risk assessment. Emphasizes the use of a number of heuristics (rules of thumb) and mathematical exposure models to increase the accuracy and efficiency of exposure decision-making. Includes several exposure assessment exercises using videos of tasks and basic characterization of the environment.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.604. PUBLIC HEALTH PREPAREDNESS: SYSTEMATIC PLANNING FOR AN UNPREDICTABLE WORLD. 1 Credit.

Provides trainees with an applied 'toolkit' to aid their current and future disaster planning, response, and recovery efforts. Focuses on Zika and other insect-borne emerging infectious diseases in the following contexts. Includes 1) a scenario contingency planning exercise, focusing on implications of surge capacity gaps in public health crises; 2) an overview and exercise-based application of the Haddon Matrix, a systematic planning instrument for preparedness; 3) development of message maps for public health crisis communication planning; 4) a discussion-based (“tabletop”) exercise on a public health emergency scenario, integrating the afore-mentioned applied principles. Includes interactive lecture and facilitated discussion, small-group breakout activities, and full-group brainstorming using these applied concepts.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.605. Food Systems Practicum. 3 Credits.

Students learn first-hand about food system sustainability issues by engaging with organizations working for positive change. They broaden their learning through classroom education, readings and assignments covering: food system sustainability, with emphasis on content areas relevant to student projects; skills and context relevant to working with these organizations; and reflection on service-learning experiences.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.606. Case Studies in Food Production and Public Health. 4 Credits.

Focuses on food production practices in the United States and the associated public health risks and benefits; discussions on animal and crop agriculture and food processing encompass both historical practices and modern methods. Presents case studies which delve deeper into specific topics, including industrial food animal production, aquaculture, veterinary drugs, agricultural policy, chemical exposures, rural communities and food animal worker health, and sustainable production methods. Lectures draw from the literature, and from the firsthand experiences of lecturers in research translation and agricultural production.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.607. Climate Change and Public Health. 3 Credits.

Explores the science of how and why the climate is changing, as well as the likely and potential impacts of climate change on public health in developed and developing regions of the world. Discusses how rising sea levels; worsening air quality; frequency and severity of weather-related disasters; and scarcity of food and drinking water are all influenced by the changing climate. Examines strategies for mitigation and adaptation, and the role public health professionals can play in these decisions.

Concludes with a full-day field trip in the Baltimore area to get hands-on experience with local responses to climate change.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.608. Public Health Responses to Environmental incidents and Disasters. 3 Credits.

Focuses on population exposures to and health impacts of non-infectious agents. Prepares students for applying methodologies for public health response and acquiring skills in developing standardized protocols to effectively recognize, evaluate and respond to public health emergencies and reported clusters of disease. Presents basic aspects of applied environmental health and policy frameworks for decision-making in environmental health. Provides competencies in finding and using web-based data sources, applying geospatial and other methodologies in analyzing information on exposures and health outcomes; identifying resources for coordinated response to environmental incidents; and communicating findings to decision-makers and the public.

Equips students to participate in responding to disasters, reported outbreaks and apparent clusters. Provides experience in establishing exposure registries.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.609. Principles of Environmental Health. 4 Credits.

Presents concepts, principles, and applications underlying the field of environmental health. Topics include contaminant sources, fate and transport, exposure and dose, study design in toxicology, climate change, environmental justice, and the built environment. Emphasizes policy, practice, and systems-based approaches. Discussions and exercises focus on reviewing current environmental health issues in the media, evaluating peer-reviewed literature on these issues, and deliberating on potential opportunities for prevention and intervention.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.610. Applied Environmental Health Practice. 4 Credits.

Applies concepts and principles of environmental health to a real-world problem impacting a community in our own backyard. Groups investigate the driving forces that underlie complex environmental health issues and explore strategies for assessment and intervention. Integrates the practical experiences of community members and students wherever possible.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.180.611. The Global Environment, Climate Change, and Public Health. 4 Credits.
Explores how global environmental issues such as global warming, urban sprawl, deforestation, mining, environmental refugees, biodiversity loss, and food security may cause increasing human harm. Provides an overview of the science and policy issues related to the changing environment, how environmental problems affect human health, and emphasizes potential solutions and sustainable development methods essential for resolving a myriad of environment-health problems.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.612. Advanced Environmental Health I. 4 Credits.
Addresses environmental contaminants originating from four environmental vectors, Air, Water, Soil, and Food, impact human health. Focuses on the foundational knowledge and methods in environmental health needed by doctoral students to prepare for advanced careers in environmental health including integration of multi-disciplinary approaches.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.614. Urban Agriculture and Public Health. 2 Credits.
Explores the connections between urban agriculture and public health using case studies around the United States. Examines the people, practices, policies, and public health significance of urban agriculture. Lectures and background reading provide an evidence-based introduction to the connections among public health, agriculture, community development and food justice. Students are expected to listen to online lecture(s), do readings, and quizzes before the course begins. The course be based at the Center for a Livable Future’s Food System Lab, an urban farm at Cylburn Arboretum featuring an aquaponics system. Field trips to local food system sites, such as a farm, farmers market and community garden, and hands-on activities help students blend theory and practice. For a final project, students will translate what they learn in the course by exploring and reporting on aspects of their own local food environment.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.618. Law and Laboratory Animals: Statutes, Regulations and Policies. 3 Credits.
Examines the laws, regulations and policies that govern the relationship between biomedical institutions, laboratory researchers and animals that have developed over the past half-century. Focuses on the systems of governmental and self-regulation that are at the heart of the U.S. (and international) efforts to address ethical and societally beneficial laboratory animal use. Explores the ethical foundations of these laws and discusses the relationship between scientists, animals and society. Includes both in-person and online lectures by research scientists, veterinarians, and professionals who are experts in humane science. Features class discussions and case studies.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.619. Drinking Water and Water Policy: Avoiding Another Flint. 1 Credit.
Provides an overview of the federal drinking water and clean water laws, as well as the resultant regulations from these laws. Considers the contaminants addressed by the regulations and the drinking water and wastewater treatment necessary to comply with the regulations. Explores the use of the Consumer Confidence Report (CCR) to understand what’s in drinking water. Investigates current issues and problems facing the water sector, as well as some of the potential solutions.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.620. Introduction to Food Systems and Public Health. 4 Credits.
Introduces the complex and challenging public health issue of food security (sufficient, safe and nutritious food for all) in a world where approximately 850 million people are under-nourished while over 2 billion are overweight or obese. Explores the connections among diet, our food system, the environment and public health, considering factors such as equity, population pressure and the historical, economic and political forces that have helped shape food systems. Considers approaches to achieving both local and global food security. Explores the important role public health professionals can play. Guest lecturers include experts from a variety of disciplines and experiences.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.621. Protecting the Environment and Safeguarding Worker Health: A Problem-Based Approach. 3 Credits.
Examines environmental and worker health by introducing and analyzing four real world problems; Explores how evidence-based interventions are designed and implemented; Emphasizes the role that social justice and environmental equity play in establishing effective public health interventions; Reviews how science, communication, and policy interweave in environmental and occupational health decision-making; Shows how environmental and occupational health leaders act to address and solve problems and prepares students to tackle and design solutions for contemporary problems in environmental and occupational health.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.622. Seafood and Public Health: from Production to Consumption. 2 Credits.
Explores trade-offs between sustainability and dietary recommendations to increase seafood intake based on health benefits. Introduces the complex nature of the changing global seafood supply, which is important to human nutrition but also raises concerns regarding environmental health, transparency, and human rights. Compares wild and farmed seafood production methods using a perspective grounded in food systems and public health. Examines approaches taken by governments and non-governmental organizations to address challenges in the global seafood supply, and the difficulty involved when focusing on the world’s most traded food type. Emphasizes the importance of understanding the many ways seafood production and consumption impacts health, and roles for public health professionals in addressing these issues. Encourages application of critical thinking skills to complex issues through class discussions and written assignments.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.180.623. Infectious Disease Threats to Global Health Security. 3 Credits.
This course will introduce students to the major health security threats that face the US and other countries and the strategies, policies and organizations that are in place to defend against them. Throughout the course, we will make notes of areas where approaches to health security have evolved. We will also examine where important gains in health security preparedness have been made and identify areas in which progress is still needed. Given their particular challenges and frequency with which they occur, preparedness for and response to biological threats to health security will be a large focus of this class. Discussions of other health security threats and sharing of experiences from students are welcome.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.624. Biotechnology and Health Security. 3 Credits.
Prepares students to examine the complex issues surrounding the security of advances in the biological sciences, and their impact on public health. Acquaints students with medical and public health options that may be possible as a result biotechnology advances—for example, to rid areas of malaria-carrying mosquitoes. Will also acquaint students with the difficult history of past biowarfare programs in the 20th century, and the continuing effect that history has on current biodefense and health security efforts. Introduces the concept of the dual-use dilemma—that is, how biotechnologies may have applications for good and harm—and explores how current biotechnology advances may be applied towards security aims, or could be misused. Topical issues in science and security policy, including genetically modified organism (GMO) controversies, will be explored, researched, and debated. Encourages application of critical thinking skills through class discussions and written assignments.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.625. Community-Driven Epidemiology and Environmental Justice. 3 Credits.
Introduces principles, concepts, and methods in community-driven environmental justice research. Presents current environmental justice research and future research needs. Offers practice opportunities for active involvement in problem-solving in environmental justice research. Provides students an opportunity to develop facility with analytic methods needed to conduct research into community environmental justice concerns.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.626. Environmental Justice and Public Health Practice. 3 Credits.
Explores environmental justice through a historical, ethical and political lens with discussions on the impacts of environmental injustice on health disparities, particularly in low income and minority communities. Critical assessment of existing environmental justice approaches will be used to foster discussions and strategies for alleviating inequities in environmental exposure and disease at multiple levels and domains of public health. This course will highlight various approaches for public health officials, advocacy groups, health professionals, policymakers, and stakeholders to contribute to environmental justice, and guide students through integrating existing expertise into environmental justice solutions.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.627. Lessons Learned in 1918 Pandemic Flu. 1 Credit.
Prepares students to examine the complex history surrounding the 1918 influenza pandemic, the public health response at that time, and compare to preparedness, today. Acquaints students with the realities of mass vaccination and medical countermeasure development. Topical issues related to influenza preparedness will be discussed, including an examination of what happened in the 1977 reemergence of H1N1 influenza, gain of function influenza experiments and other controversial influenza research, and the effectiveness of non-pharmaceutical interventions. Encourages application of critical thinking skills through class discussions and written assignments.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.628. Introduction To Environmental and Occupational Health Law. 4 Credits.
Introduces the theory and practice of environmental and occupational health law. Examines the approaches and strategies that underlie federal (United States) and state environmental and occupational health laws and regulations. Focuses on the study of the most significant federal and state environmental and occupational health laws and regulations, such as the Clean Air Act, Occupational Safety and Health Act, Comprehensive Environmental Response, Compensation, and Liability Act, and workers’ compensation laws, with a particular emphasis on how they can be utilized as public health tools. Introduces students to the institutions and agencies that administer worker and environmental protection programs, and acquaint students with international treaties and laws aimed at protecting the environment and workers.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.629. Environmental and Occupational Health Law and Policy. 4 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.630. Chemical and Biological Weapons Threats: Science, Public Health, Policy. 3 Credits.
Provides a broad understanding of the application of scientific concepts of biological and chemical warfare agents to inform evidence-based public health action and policy-making. Reviews the scientific principles and outcomes of threat agent use. Includes topics such as scientific and clinical aspects of threats agents, history of past use, and overarching policies to control their use. Examines the public health aspects of preparedness, including national development, use, and sharing of medical countermeasures. Explains principles of preparedness and response using case studies. Builds skills in crafting evidence-based public health policy options in preparing and responding to chemical and biological threats.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.631. Environmental and Occupational Health Policy Seminar. 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.180.632. Introduction to Molecular Toxicology. 3 Credits.

Introduction to Molecular Toxicology is a 3-credit online course that introduces toxicology at a molecular level. It is designed for students with minimal background in biology and toxicology. The course will review the molecular mechanisms of diseases associated with environmental exposures. The course will introduce the cellular signaling pathways involved in protection from effects of chronic exposure to environmental toxicants, including responses to stress and oxidative damage. The course will also review both genetic and epigenetic changes that are associated with disease pathogenesis. In addition, the course will present the most recent technological advances in the molecular tools available to study effects of environmental toxicants, including next generation sequencing, mass spectrometry, gene editing models and emerging alternative animal models.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.633. The Sociocultural Dimensions of Disasters. 3 Credits.

Provides an anthropological viewpoint on extreme events including natural disasters, outbreaks, and technological accidents. Explores the human hand in, and experience of disasters - phenomena that influenced by the ways people imagine, build, organize, and value their communities. Critically examines the present trend of more frequent and more severe disasters, as well as chronic disparities in people’s abilities to withstand and to recover from mass tragedy. Introduces theories of social vulnerability and community resilience to inform policies on how to reduce the chances for, as well as consequences of disasters.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.634. Public Health Emergencies: Risk Communication and Decision Science. 3 Credits.

Explores the science of risk communication and decision making. Discusses risk perception, communication guidance, and news media portrayal of risks. Reviews existing guidance on risk decision making. Presents previous and current public health emergencies as practice-based examples of risk communication and decision making. Examines public health emergency scenarios to prepare students for communication and decision making in their future work.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.635. Seafood and Public Health: Global Trade, Nutrition and the Environment. 2 Credits.

Explores the (sea)food system with a multi-disciplinary approach and real world examples. Examines the local-to-global connections in the most internationally traded food commodity, and why this matters for food and nutrition security, as well as environmental health. Discusses how the seafood sector can create a sustainable Blue Economy that works for businesses, fish workers, and consumers. Focuses on low- and middle-income countries where seafood is key for food and livelihoods.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.636. Human Rights and Health Seminar. 3 Credits.

Introduces students to human rights in general, health as a human right, impact of health policies, programs and practices on human rights, and collective impacts of human rights violations, whether gross violations in human conflict or insidious violations associated with mistreatment of individuals and marginalized groups.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.637. Refinement of Animal Experimentation: Essential to Reduce Animal Suffering and Enhance Scientific Rigor. 2 Credits.

Prepares students who work or plan to work with animal subjects in the laboratory. Explores how to comprehensively and adequately apply Refinement methods in practice. Focuses on current housing and husbandry standards and discusses the benefits of a ‘culture of care’ for animals. Examines current best approaches to the important experimental refinements, namely anesthesia, analgesia, pain assessment and management, health monitoring, and humane endpoints and killing methods. To further assess the quality of animal-based research, necessary refinements in planning, conduct, analysis and reporting practices of animal studies are reviewed. Presents potential barriers to the uptake and application of Refinement methods and how they are challenged.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.638. Animals in Research: Ethics. 1 Credit.

Introduces students to the principles of bioethics when using animals in biomedical research and testing. Discusses the most common ethical theories such as contractarianism, Kantianism and utilitarianism. Addresses ethical issues arising from the use of animals in biomedical research and emphasizes on the role the three Rs of animal experimentation (Replacement, Reduction and Refinement) play when conducting animal experiments. Explores the harms involved in animal studies and assesses these against the benefits (harm-benefit analysis, HBA). The HBA is considered to be a key ethical safeguard for animals and, thus, is discussed in detail. Prepares students for real-world problems they may face in the laboratory.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.639. Advanced Environmental Health II. 4 Credits.

Focuses on the foundational knowledge and methods and their application in environmental health and engineering needed by doctoral students to prepare for careers in environmental health. Frames how environmental contaminants originating from four environmental vectors, Air, Water, Soil and Food, impact human health.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.640. Molecular Epidemiology and Biomarkers in Public Health. 4 Credits.

Emphasizes the scientific basis of molecular epidemiology and provides examples of the application of molecular biology, analytical chemistry, and toxicology to the study of chronic disease etiology and its public health application, including examples in human cancer, cardiovascular, immunological, and neurological diseases. Also discusses methodological and study design problems.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.180.651. **Climate Change and Public Health Problem Solving Seminar: Global Challenges and Solutions for Mitigation, Adaptation, and Sustainability.** 3 Credits.

Equips students with the skills to understand how to evaluate, assess and design and adaptation and mitigation strategies for global climate change impacts on public health. Features "real world" scenarios and case studies that are used to demonstrate the likely impacts of climate change on public health. Analyzes case studies and discusses how evidence-based science is deployed to combat the environmental health aspects of climate change. Gains a better understanding of the role that social justice and environmental equity play in the challenges that climate change brings. Emphasizes a systems-based approach, recognizing that climate change problem-solving methodology is multi-dimensional and multi-sectorial.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.644. **Food System Resilience to Disasters: COVID-19, Climate Change, and Beyond.** 2 Credits.

Provides an overview of the ways food systems have been impacted by COVID-19, actions to protect and improve food security, and the implications for public health. Engages students with guest speakers working at the cutting edge of food+COVID policy, practice and research, from community-based to global levels of action. Explores concepts of food systems, food system resilience, disaster management, and equity. Discusses how systemic factors (including poverty, racism and unsustainable food systems), affect outcomes, with application to climate change and other disasters. Reviews the strengths and limitations of responses in policy, practice, and research, primarily in the U.S. but also internationally. Challenges students to explore diverse perspectives and constraints; and to envision and design further responses addressing short-term emergency needs, adaptation of systems, and longer-term, deep, systemic change.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.647. **The Health Effects of Indoor and Outdoor Air Pollution.** 3 Credits.

Provides a broad understanding of air pollution, it's sources, transport and exposure. Examines important atmospheric chemistry and measurement methods. Discusses the relationship between air pollution and health effects. Includes topics such as oxidant pollutants, sulfur dioxide and acid aerosols, particulates, bioaerosols, volatile organic compounds, and indoor air pollution. Also covers host susceptibility factors, the influence of global warming, and regulation and public policy.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.650. **Fundamentals of Clinical Oncology for Public Health Practitioners.** 3 Credits.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.651. **Energy, Environment, and Public Health.** 2 Credits.

Examines why energy policy choices are so important to human health and well-being. Explores how the impacts of energy exploration, generation, and usage patterns are tied directly to economic prosperity, the condition of the environment, the health of the population, and even aspects of national and international security, for developed as well as developing nations. Discusses and presents potential solutions to the three biggest energy challenges: (1) meeting the basic energy needs of the world's poorest people in a more healthful manner, (2) de-carbonizing electricity generation, and (3) reducing oil dependence. Emphasizes that energy is the core of the environment problem and environment is the core of the energy problem.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.653. **Climate Change: Avoiding Conflict and Improving Public Health.** 3 Credits.

This course explores the potential for a changing climate to cause food and water shortages, forced migration, and conflict. Through a series of case studies of climate change-relevant crisis events around the world, we will examine the factors that led to the communities in question mustering resilience to survive and recover from the crisis vs. the factors that led to conflict. Through this analysis, we will identify a suite of resilience factors and strategies, such as community cohesion, ecosystem restoration, agricultural and water capture and storage, that could be built into policies to assist high risk areas in avoiding conflict.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.655. **Baltimore Food Systems: A Case Study of Urban Food Environments.** 4 Credits.

Challenges students to look closely at the environment of Baltimore City's complex food systems, and to consider what it would take to improve these systems to assure access for all to nutritious, adequate, affordable food, ideally with reduced environmental harm. Students "go backstage" with tour guides at sites including a supermarket, a corner store, an emergency food distribution center, and a farm connected to the city school system. Students learn about the types of food available at these sites, who uses them, relevant aspects of their operations, and site-relevant key barriers to, and opportunities for, providing access to healthier and more sustainably produced food. Students also conduct oral history interviews about food with elderly city residents to understand how food access has changed over the years. Class sessions engage students to think critically, and provide background and frameworks for understanding the experiential sessions. Throughout, students consider the relative impacts of access, demand, and stakeholder interests, and consider the relative strengths and weaknesses of voluntary, regulatory (governmental), legal and other strategies. Lectures and discussions consider applicability of lessons gained from the study of Baltimore to other food systems. For their final papers, students identify a problem and its key determinants, and they propose/analyze an option to address it. Students think critically about selected aspects of the city's food systems and food environments, identifying challenges and opportunities for change and incorporating lessons learned from other food systems and programs. Students also discuss implications beyond Baltimore.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.660. **Introductory Principles of Environmental Health.** 3 Credits.

Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.180.661. Writing Scientific Papers I. 2 Credits.
Enables doctoral students to attain skills in writing successful scientific papers—that is, papers that are accepted by peer-reviewed journals. Confers skills in identifying and using online information sources. Informs participants on different publication options, including open source journals. Explains NIH requirements for notification and access. Through problem based learning and review of successful scientific papers, conveys the elements of successful scientific papers, including formats, data presentation, citations and acknowledgements. Demonstrates successful response to reviewer comments.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.662. Writing Scientific Papers II. 2 Credits.
Enables doctoral students to attain skills in writing successful scientific papers—that is, papers that are accepted by peer-reviewed journals. Confers skills in identifying and using online information sources. Informs participants on different publication options, including open source journals. Explains NIH requirements for notification and access. Through problem based learning and review of successful scientific papers, conveys the elements of successful scientific papers, including formats, data presentation, citations and acknowledgements. Demonstrates successful response to reviewer comments.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.663. Grant Writing I. 1 Credit.
Enables doctoral students to attain skills in writing successful funding proposals—that is, proposals that are likely to receive approval for funding. Introduces students to grant writing, funding sources, types of NIH grants, how to read an RFA, PA or other announcements, and develop a biosketch. Explores the requirements of a successful NIH style grant proposal.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.670. Introduction to Public Health Emergency Preparedness. 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.820. EHE Doctoral Thesis Research. 1 - 22 Credits.
Provides an opportunity to actively conduct research in environmental health.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.829. Summer Thesis Research. 12 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.840. EHE Doctoral Special Studies and Research. 1 - 22 Credits.
Provides a forum for students to receive feedback on their research ideas and projects. Acquaints students with research of leading environmental health experts.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.841. SS/R: INTRODUCTION TO ENVIRONMENTAL HEALTH. 3 Credits.
Examines health issues, scientific understanding of causes, and possible future approaches to control of the major environmental health problems in industrialized and developing countries. Topics include physical, chemical, and biological agents of environmental contamination; solid and hazardous waste; susceptible populations; biomarkers and risk analysis; the scientific basis for policy decisions; and emerging global environmental health problems.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.860. EHE Student Seminar & Grand Rounds. 1 Credit.
Provides a forum for students to present their current research project and receive feedback from faculty and students. Introduces students to research of leading environmental health experts.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.180.880. SPECIAL STUDIES IN ENVIRONMENTAL HEALTH/ COMMUNITY OUTREACH. 1 - 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.181.845. EHE MHS Special Studies & Research. 1 - 22 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.181.850. MHS Essay. 1 Credit.
Provides the opportunity for the student to work with their adviser to formulate, research, finalize, and gain approval of the required essay.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.613. Exposure Assessment Techniques for Health Risk Management. 3 Credits.
Prepares the students to use techniques of exposure assessment to quantitatively estimate exposures in occupational and non-occupational settings. Students will be introduced to concepts of exposure variability and its implications for interpreting small exposure data sets. Students will apply advanced techniques such as mathematical modeling of exposures using exposure determinant information, analysis of variance for between- and within-subject variability, Monte Carlo analysis of uncertainty, Bayesian decision analysis using small data sets, exposure assessment strategies in occupational settings. Students will analyze case studies to assess exposures in real-life scenarios using multiple methods. Students will critically evaluate key scientific papers on exposure assessment strategies.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.614. Industrial Hygiene Laboratory. 5 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.615. Airborne Particles. 4 Credits.
Describes the basics of airborne particles. Explores properties of gases, particle motion, size statistics, Brownian motion and diffusion, curvilinear motion of particles, particle deposition and clearance in the human respiratory system, filtration, aerosol samplers, and sampling methodology, optical properties and electrical properties of aerosols. Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.182.617. Exposure Sciences for Health Risk Assessment. 4 Credits.
Prepares students to use techniques of exposure assessment in aid of epidemiological studies. Introduces students to core concepts including exposure variability and its implications for reconstructing historical exposures; sparse data and measurement errors; the exposure data matrix; methods for imputation of missing values; the relationship between exposure and tissue concentrations; the choice of exposure metric; and exposure-response relationships. Examines advanced techniques for imputing missing data while reconstructing exposures. Demonstrates the application of mathematical models of exposure using exposure determinant information and Bayesian methods. Considers exposure windows and exposure lagging. Focuses on using biologic models of how disease develops in response to exposure. Students critically evaluate exposure assessment strategies in selected epidemiological studies from the peer-reviewed literature.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.621. Introduction to Ergonomics. 4 Credits.
Introduces the fundamental principles of ergonomics, including terminology, concepts, and applications of physiology, anthropometry, biomechanics, psychology, and engineering to work place and work methods design. Emphasizes the complex relationships among workers, job demands, work place designs, and work methods. Prepares students for advanced study in safety science, industrial hygiene, injury prevention, industrial engineering, and safety and health management.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.622. Ventilation and Hazard Control. 4 Credits.
Covers the principles of industrial ventilation and engineering controls for airborne hazards. Provides competency in general ventilation and industrial ventilation design.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.623. Occupational Health Management. 3 Credits.
Examines modern Lean management methodology and how it can be leveraged to design and implement an effective health, safety, and environmental (HSE) management system in an organization. D stresses Lean management methods and tools and how they impact organizational structure, SHE planning, risk assessment, training, and continuous HSE improvement.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.625. Principles of Occupational and Environmental Hygiene. 4 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.626. Issues for Water and Sanitation in Tropical Environmental Health. 2 Credits.
Introduces major environmental health problems in the tropical areas of the world and discusses some solutions in detail. Covers engineering, human behavior, and public health approaches to providing potable water and sanitation including simple water supplies, sanitary latrines, the relationship of water supply and sanitation to diarrheal diseases, disaster sanitation, and techniques for disinfection. Demonstrates field treatment of water supplies and water microbiology. Each student develops a case study drawn from current events and designs a field project for an environmental control measure to reduce disease in a community. In addition, students develop a short (4-6 page) mock grant proposal designed to implement an integrated water and sanitation hygiene intervention of their choosing drawing on the lessons learned during this course.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.631. Principles of Occupational Safety. 2 Credits.
Introduces the organizational framework in which safety sciences are practiced in the U.S. Illustrates professional and scientific methodologies by focusing on selected, substantive areas of practice (systems safety, nature of accidents, electrical hazards, fire and fire suppression, explosions and explosives, and falls and walking and working surfaces).
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.637. Noise and Other Physical Agents in the Environment. 4 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.638. Environmental and Health Concerns in Water Use and Reuse. 4 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.640. Food- and Water- Borne Diseases. 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.641. AIR, WATER AND FOOD TOXINS. 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.810. EHE MS Field Placement. 1 - 22 Credits.
Focuses on a mentored, hands-on practical public health experience, which involves meaningful participation and interaction with public health professionals.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.820. THESIS RESEARCH ENVIRONMENTAL HEALTH ENGINEERING. 1 - 22 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.840. SPECIAL STUDIES/RESEARCH ENVIRONMENTAL HEALTH ENGINEERING. 1 - 22 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.845. EHE MS Special Studies and Research. 1 - 22 Credits.
Prepares students to identify and research the central issues in environmental health.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.182.850. EHE MS Essay. 1 - 16 Credits.
Students work with their adviser to formulate, research, finalize, and gain approval of their master's essay, which is based on a required Independent Professional Project (IPP). Students write the essay as a professional report summarizing the findings of the IPP. This represents a substantive application of professional technical skills through the process of collecting and summarizing data and reviewing appropriate literature.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.182.860. Special Studies Seminar in Occupational and Environmental Hygiene. 1 Credit.
Prepares seminars by faculty, students, and invited speakers dealing with occupational and environmental hygiene professional practice and research. Provides examples of various occupational/environmental settings and associated worker hazards. Serves to integrate various courses taken as part of the online master's in OEH program and to familiarize students with state-of-the-art professional practice procedures and guidelines. Provides a venue for master's students to present their final essays.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.183.631. Fundamentals of Human Physiology. 4 Credits.
Encompasses the integration of a variety of organ systems. Invites leading scientists from different fields of physiology to offer exceptional and up-to-date lectures that quickly move through the basic mechanistic principles. Applies basic mechanistic principles of each organ system to current public health issues and environmentally relevant topics.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.183.638. Mechanisms of Cardiopulmonary Control. 2 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.183.641. The Health Effects of Indoor and Outdoor Air Pollution. 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.183.642. The Cardiopulmonary System Under Stress. 2 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.183.643. Essentials of Pulmonary Function Measurements. 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.183.825. EHE ScM Thesis Research. 1 - 22 Credits.
Provides an opportunity to actively conduct research in environmental health
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.183.840. EHE Scm Special Studies and Research. 1 - 22 Credits.
Provides a forum for students to receive feedback on research ideas and projects. ScM students enroll in this course prior to passing the written comprehensive exam.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.184.830. Postdoctoral Research Environmental Health and Engineering. 1 - 22 Credits.
Offers an opportunity for postdoctoral students to conduct research and write papers for publication.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.185.600. One Health Tools to Promote and Evaluate Healthy and Sustainable Communities. 3 Credits.
Students will learn and apply tools and principles of One Health, which is the interface of human health, animal health and environmental health, to promote and evaluate healthy and sustainable communities. Classes will cover methods central to the conduct of One Health research or programs, which includes study design, stakeholder participation, community engagement and program evaluation, and will cover topics of high relevance to One Health in a way that uses systems approaches and synthesis to join perspectives from the multiple disciplines. These topics include drivers—such as the food system and antimicrobial resistance—that can contribute to or detract from the health and sustainability of communities. Methods will be presented in the context of applications such as policy, regulation, and economics and will connect One Health techniques for knowledge integration and other approaches to the design of healthy communities.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.185.601. One Health Seminar. 1 Credit.
Addresses global and domestic health challenges through a One Health lens, including practice-based approaches increasingly adopted by government agencies, non-governmental organizations and the tripartite (WHO, OIE, FAO). Engages experts in the field to discuss emerging topics and application of One Health approaches. Explores wide-ranging topics that include zoonotic infectious diseases, health security, preparedness, disaster response, climate change, planetary health, food systems, sustainability, chemical exposures, occupational health, health communication, and policy.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.185.621. METHODS IN THE EXPOSURE SCIENCES. 3 Credits.
Students apply principles of the exposure sciences related to environmental and occupational health contexts. They design an exposure assessment study and interpret exposure data. Students explain routes of exposure and biological mechanisms that influence sampling strategies, and present methods in the context of applications such as policy and regulation and evaluate how exposure studies impact various stakeholders and inform policy decision-making.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.185.801. Exposure Sciences & Environmental Epi Journal Club. 1 Credit.
Provides a forum for students and multiple faculty to keep up-to-date on the latest environmental health research and get feedback on their research ideas and projects. Emphasizes active participation in discussions of the peer-reviewed literature, the most up-to-date research, and the process of research development.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.185.803. Health Security Journal Club. 1 Credit.
Provides a forum for students to engage with multiple faculty to discuss current topics in health security and global catastrophic biological risks. Emphasizes active participation in discussions related to peer-reviewed publications, as well as trends in research and policy, and offers an environment to contemplate and receive feedback on research development.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.185.805. Toxicology, Physiology & Molecular Mechanisms Journal Club & Seminar. 1 Credit.
Provides an opportunity for students and postdoctoral fellows to present scientific papers from the current literature dealing with mechanisms underlying environmental diseases and the methodologies used to study them. Papers are organized around specific themes selected by the course instructors.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.185.806. Advanced Concepts in Toxicology, Physiology & Molecular Mechanisms. 2 Credits.
Provides a platform for students, postdoctoral fellows and faculty to present and discuss impactful scientific papers from the current literature that deal with mechanisms underlying environmental disease along with accompanying methods. Explores additional aspects that are relevant to conducting and conveying laboratory research, including study design and statistical analysis, manuscript and grant review, policy and practice, and risk assessment. Outside speakers will also be invited to present on a topic relevant to advanced concepts.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.185.810. Field Placement Esee. 1 - 22 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.185.921. QUANTITATIVE METHODS IN THE EXPOSURE SCIENCES LABORATORY. 1 Credit.
In this quantitative laboratory, students will apply principles of the exposure sciences related to environmental and occupational health contexts. Students will learn how to design an exposure assessment study and how to analyze and model quantitative and semi-quantitative data. Students will analyze spatial and temporal dependency structure in the data and mixed exposure scenarios.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.186.800. MPH Capstone: Environmental Health & Engineering. 2 Credits.
Provides students with the opportunity to work on a public health practice project on a chosen public health problem that simulates a professional practice experience.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.186.895. MPH Practicum: EHE. 1 - 4 Credits.
The MPH Practicum is a mentored, hands-on practical public health experience, which involves meaningful participation and interaction with public health professionals.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.610. Public Health Toxicology. 4 Credits.
Examines basic concepts of toxicology as they apply to the effects of environmental agents present in air, water and food (e.g. chemicals, metals) on public health. Discusses the distribution, cellular uptake, metabolism, and elimination of toxic agents, as well as the fundamental principles governing the interaction of foreign chemicals with biological systems. Considers how population data on disease incidence (various cancers, lung, kidney, heart, etc.) can suggest possible etiologies and how genetic and epigenetic factors can influence risk for adverse health effects. Focuses on the application of how these concepts provide evidence relevant to the understanding and prevention of morbidity and mortality resulting from environmental exposures to toxic substances through presentation of case studies.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.625. Animals in Research: Law, Policy, and Humane Sciences. 3 Credits.
Imparts fundamental knowledge about basic and applied (bio)medical research. Explores the main shortcomings of animal use in science. Discusses how to fully apply the 3R principles, and how to properly conduct experiments. Prepares students to critically appraise the validity of animal and non-animal models and methods in order to choose the best means for particular research interests.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.632. Molecular Toxicology. 4 Credits.
Reviews the mechanisms of environmental diseases at the molecular and genetic levels through faculty lectures and discussion of scientific papers. Topics include cell signaling pathways involved in protection from exposure to environmental toxicants, including the stress responses to heat shock, oxidative damage and exposure to toxic metals and xenobiotics involved in environmental diseases such as cancer, heart diseases, infectious and other inflammatory diseases that impact public health. Addresses the impact of environmental agents on cell growth, cell death, inflammation and the multi-stages of carcinogenesis. Presents most recent technological advances in the molecular and genetic tools available to study problems of environmental toxicology, which includes bioinformatics, gene arrays, nextgen sequencing and transgenic animals and emerging alternative animal models.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.633. Introduction to Environmental Genomics and Epigenomics. 3 Credits.
Presents the concept of the genetic and epigenetic data analysis in environmental health studies. Introduces not only single gene analysis but also genome-wide data searching. Also introduces cutting-edge analytical tools for ‘omic’ data not limited to genomics, but also for epigenomics, proteomics and metabolomics. Provides an introduction to the pathway analysis for ‘omic’ data.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.187.634. Analysis for Environmental Genomics and Epigenomics. 1 Credit.
Emphasizes the analytical methods for genomic and epigenomic data analysis. Presents step-by-step instructions for searching and extracting databases and performing pathway analyses on existing genomic and/or epigenomic data. Acquaints students with ‘omic’ data analysis by participating group project that aims for proving the principle or generating new hypothesis for a selected research topic.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.640. Toxicology 21: Scientific Foundations. 1 Credit.
Provides students with fundamental knowledge of the biochemical and molecular basis of toxicity in order for them to understand the current and evolving methodologies of toxicity testing and the emerging science driving new strategies for human risk assessment. Topics include toxicokinetics, xenobiotic activation and inactivation, signal transduction pathways, DNA damage, mutagenesis, carcinogenesis, and systems biology. Examines signaling pathways that have been identified as critical in responses to environmental pollutants. Uses case studies to address environmental agents of concern. Lectures include data from studies that had been used to make regulatory decisions by agencies such as the Environmental Protection Agency and Federal Drug Agency.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.645. Toxicology 21: Scientific Applications. 3 Credits.
Familiarizes students with the novel concepts being used to revamp regulatory toxicology in response to a breakthrough National Research Council Report “Toxicity Texting in the 21st Century: A Vision and a Strategy.” Presents the latest developments in the toxicology field: moving away from animal testing toward human relevant, high content, high throughput integrative testing strategies. Active programs from EPA, NIH and the scientific community work-wide illustrate the dynamics of safety sciences.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.650. Alternative Methods in Animal Testing. 3 Credits.
Discusses and evaluates strategies for reducing the number of animals utilized in basic and applied research. Addresses traditional in vitro methods, including cell culture and analytical chemistry as well as newer and evolving techniques such as informatics, genomics, proteomics, and metabolomics. Also discusses governmental regulatory processes for approving new testing methods, especially in vitro methods.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.655. Evidence-Based Toxicology. 3 Credits.
Provides students with fundamental knowledge about EBT approaches currently in use (or in development) that integrate and utilize diverse sources of data. These approaches include meta-analysis and systematic reviews, as used in evidence-based medicine. Introduces, explains and expands upon techniques such as risk of bias, QA/QC, good laboratory practice and validation, and the role that these tools and techniques play in assuring maximum confidence in evidence-based approaches.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.661. Environmental Health in Neurological and Mental Disorders. 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.820. THESIS RESEARCH TOXICOLOGICAL SCIENCES. 1 - 22 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.187.840. SPECIAL STUDIES AND RESEARCH TOXICOLOGICAL SCIENCES. 1 - 22 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.188.680. Fundamentals of Occupational Health. 3 Credits.
Introduces selected important topics in occupational health through lectures, readings, and class discussion. Provides an overview of the field, providing a survey of the history of occupational health; analysis of case studies in the history of asbestos, coal workers pneumoconiosis, and uranium mining; identification of the burden of occupational injuries and diseases; application of the toxicologic paradigm to activities in occupational health; analysis of occupational health hazards; identify the association between social, behavioral, and organizational factors and health outcomes in the workplace; identification of legal, regulatory, and ethical issues; analysis and research in clinical and non-clinical emerging issues in occupational health; and an introduction to the concepts of occupational health in developing countries.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.188.681. Onsite Evaluation of Workplace and Occupational Health Programs. 5 Credits.
Lectures, discussions, and visits to various industrial sites present approaches to evaluating the industrial environment, including industrial process, hazards, organization, and management structure. Stresses the importance of interdisciplinary cooperation in the development of occupational health programs, with reference to the U.S. workplace in the next decade.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.188.682. A Built Environment for A Healthy and Sustainable Future. 3 Credits.
Addresses the role that the built environment plays in public health. Specifically examines how building design, community planning and design, land use, and transportation networks contribute to energy use, water supply degradation, climate change, ecosystem degradation, and public health. Explores the contributions of suburban sprawl to adverse environmental and public health outcomes. Also examines how transportation policy, green building approaches, the New Urbanism, and Smart Growth offers potential solutions to these challenges.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.188.686. Clinical Environmental and Occupational Toxicology. 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
PH.188.688. Global Sustainability & Health Seminar. 1 Credit.
Discusses the causes, consequences, and implications of key global environmental challenges that we are facing and that are likely to become more challenging over time. Specifically addresses how land use (e.g., patterns of urban growth and suburban sprawl), energy use, food production and distribution, water use, and population growth are causing climate change, ecosystem degradation, biodiversity losses, species extinctions, and other resource depletion, and how all this is in turn is a threat to human health as individuals, in communities, and globally.
Focuses on discussion and not lectures and will utilize a mix of movies, guest discussants, and student-directed discussions.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.188.694. Health of Vulnerable Worker Populations. 3 Credits.
Discusses occupational safety and health program considerations for vulnerable populations, including all levels of prevention and using examples such as the health needs of women workers, shift workers, aging workers, workers’ families, and workers with chronic diseases or impairments. Focuses on strategies for identifying and removing barriers that affect health and work performance, program development and management responsibilities, and cost issues related to selected preventive and rehabilitative programs. Presents relevant research findings on the ability of vulnerable populations to benefit from safe and healthy working lives.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.188.820. THESIS RESEARCH OCCUPATIONAL AND ENVIRONMENTAL HEALTH. 1 - 22 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.188.840. Special Studies and Research Environmental Health & Engineering. 1 - 22 Credits.
Prepares students to identify and research the central issues in environmental health
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.188.861. Advanced Topics in Toxicology and Physiology. 1 Credit.
Reviews the unique and advanced topics in toxicology and physiology. Presents students with guidelines for understanding the basic knowledge as well as the advanced methodology in toxicology and physiology. Prepares students to be able to identify the environmental health problems and present the critical reviews on the original peer-review papers in selected topics.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

Cross Listed Courses
Earth & Planetary Sciences
AS.270.205. Introduction to Geographic Information Systems and Geospatial Analysis. 3 Credits.
The course provides a broad introduction to the principles and practice of Geographic Information Systems (GIS) and related tools of Geospatial Analysis. Topics will include history of GIS, GIS data structures, data acquisition and merging, database management, spatial analysis, and GIS applications. In addition, students will get hands-on experience working with GIS software.
Area: Engineering, Natural Sciences

Epidemiology
PH.340.680. Environmental and Occupational Epidemiology. 4 Credits.
Introduces the key health effects of environmental and occupational exposures and the epidemiologic methods used to identify and estimate those effects. Emphasizes the interplay of methodological issues, including the assessment of environmental exposures and the understanding of specific disease processes in identifying the health impact of environmental exposures in the population. Students learn about environmental and occupational exposures (including water and air pollution, food contamination, ionizing radiation, persistent environmental pollutants and emergent environmental exposures) and key methodological issues relevant for these exposures in population studies (including study design, exposure assessment and biomonitoring, disease clusters, dose-response relationships, susceptibility, geographic analysis, and evidence synthesis).
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

Extradepartmental Studies
PH.550.608. Problem Solving in Public Health. 4 Credits.
Uses divergent public health issues to illustrate a systematic problem solving process for use in addressing public health problems. The problem solving process includes defining the problem, measuring its magnitude, understanding the key determinants, developing a conceptual framework of the relationships between the key determinants, identifying and developing intervention and prevention strategies (either interventions or policies), setting priorities among intervention options, understanding barriers to implementation and evaluation, and developing an effective communication strategy. Consists of lectures, discussions, small-group exercises, a group project, and individual assignments.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.550.631. Biological Basis of Public Health. 3 Credits.
Discusses molecular, biochemical, cellular and immunological methodology and approaches for the mechanistic understanding, treatment and prevention of human diseases, and for understanding disease susceptibility. The focus will be on the application of biological methods and approaches to such critical issues as infectious disease, cancer, neurodegenerative disease, COPD, environmental toxicant effects on early development, and reproductive anomalies and their treatment.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).

PH.550.855. MA Public Health Biology Thesis. 5 - 6 Credits.
Provides an opportunity for students to, in consultation with a faculty mentor from the Dept of Biochem and Molecular Bio, Environmental Health or Molecular Microbiology and Immunology, prepare a critical, scholarly paper on an agreed upon subject area.
Course location and modality is found on the JHSPH website (https://www.jhsph.edu/courses/).
General Engineering
EN.500.113. Gateway Computing: Python. 3 Credits.
This course introduces fundamental programming concepts and techniques, and is intended for all who plan to develop computational artifacts or intelligently deploy computational tools in their studies and careers. Topics covered include the design and implementation of algorithms using variables, control structures, arrays, functions, files, testing, debugging, and structured program design. Elements of object-oriented programming, algorithmic efficiency and data visualization are also introduced. Students deploy programming to develop working solutions that address problems in engineering, science and other areas of contemporary interest that vary from section to section. Course homework involves significant programming. Attendance and participation in class sessions are expected.
Prerequisite(s): Students may not have earned credit in: EN.500.112 OR EN.500.114 OR EN.510.202 OR EN.530.112 OR EN.580.200 OR EN.601.107 OR EN.500.132 OR EN.500.133 OR EN.500.134.
Area: Engineering
Health Behavior and Society
PH.410.608. Applying Systems Thinking to Obesity Prevention. 2 Credits.
Given the complexity of many public health problems, systems thinking is increasingly cited as an approach and competency needed to understand these problems. The field of obesity in particular has benefited from systems thinking, methods and modeling, however, the application of these methods remains in an inchoate stage. Students will explore various systems concepts such as leverage points, heterogeneity, complexity, adaptability, interdependence, and learn how those concepts have been applied in obesity and food system research. Students will learn which systems concepts are most useful for researching specific obesity topics and their limitations. Finally, students will explore how systems research concepts and models critically appraised and communicated with others to public health policy makers can exercise a greater degree of wisdom and insight.
Course location and modality is found on the JHSPH website (https://www.jhsphs.edu/courses/).
Health Policy and Management
PH.305.610. Issues in Injury and Violence Prevention. 2 Credits.
Addresses prominent sources of injury, including motor vehicles, falls, fires, and firearms. Explores the biological, behavioral, and social issues relating to injury and violence prevention and policy. Emphasizes basic strategies for preventing injuries and deaths in the workplace, home, travel, and recreation, and the relative effectiveness of various types of approaches.
Course location and modality is found on the JHSPH website (https://www.jhsphs.edu/courses/).
PH.317.600. Introduction to the Risk Sciences and Public Policy. 4 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsphs.edu/courses/).
PH.317.605. Methods in Quantitative Risk Assessment. 4 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsphs.edu/courses/).
PH.317.610. Risk Policy, Management and Communication. 3 Credits.
Course location and modality is found on the JHSPH website (https://www.jhsphs.edu/courses/).
PH.317.615. Topics in Risk Assessment. 2 Credits.
Uses a case study approach of a selected risk-based public health issue to integrate student's application of the skills in the risk sciences (risk assessment, risk management, and risk communication). Course location and modality is found on the JHSPH website (https://www.jhsphs.edu/courses/).
Interdepartmental
AS.360.147. Freshmen Seminar: Adam Smith and Karl Marx. 3 Credits.
This course will compare the ideas of Adam Smith, the most famous proponent of free trade and free enterprise, with those of Karl Marx, the greatest critic of capitalism. For freshmen only.
Area: Humanities, Social and Behavioral Sciences
Writing Intensive
AS.360.528. Problems in Applied Economics. 2 Credits.
This course focuses on a monetary approach to national income determination and the balance of payments. Money and banking, as well as commodity and financial markets, are dealt with under both central banking, as well as alternative monetary regimes. Particular emphasis is placed on currency board systems. Students learn how to properly conduct substantive economic research, utilizing primary data sources, statistical techniques and lessons from economic history. Findings are presented in the form of either memoranda or working papers of publishable quality. Exceptional work may be suitable for publication through the Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise. Advanced excel programming skills are required and students are expected to be pre-screened for research at the Library of Congress in Washington, D.C.. Bloomberg certification is a requisite.
Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration & Online Forms.
Writing Intensive
Public Health Studies
AS.280.335. The Environment and Your Health. 3 Credits.
This course surveys the basic concepts underlying environmental health sciences (toxicology, exposure assessment, risk assessment), current public health issues (air, water- and food-borne diseases) and global health threats (climate change, designing healthy communities, and environmental justice). Public Health Studies, Environmental Sciences & Studies, Environmental Health & Engineering, and Earth & Planetary Science majors have 1st priority for enrollment. Your enrollment may be withdrawn at the discretion of the instructor if you are not a PHS, ENVS, EHE or EPS major.
Area: Natural Sciences