The part-time Data Science program balances theory and applications so that you can advance your career long term.

The rigorous curriculum focuses on the fundamentals of computer science, statistics, and applied mathematics, while incorporating real-world examples. By learning from practicing engineers and data scientists, graduates are prepared to succeed in specialized jobs involving everything from the data pipeline and storage to statistical analysis and eliciting the story the data tells.

Courses are offered online as well as in-person at the Applied Physics Laboratory. The Master of Science degree or Post-Master’s Certificate may be completed fully online, fully in person, or via a blend of the two.

Program Committee

John A. Piorkowski, Program Co-Chair
Principal Professional Staff
JHU Applied Physics Laboratory

James C. Spall, Program Co-Chair
Principal Professional Staff
JHU Applied Physics Laboratory
Research Professor, Department of Applied Mathematics and Statistics
JHU Whiting School of Engineering

Anthony N. Johnson, Program Manager
Senior Professional Staff
JHU Applied Physics Laboratory

Tamás Budavári
Associate Professor, Department of Applied Mathematics and Statistics
Associate Professor, Computer Science
JHU Whiting School of Engineering

Stephyn Butcher
Senior Software Engineer
ThreatGRID, a Division of Cisco

Beryl Castello
Senior Lecturer, Department of Applied Mathematics and Statistics
JHU Whiting School of Engineering

Eleanor Boyle Chlan
Senior Professional Staff (retired)
JHU Applied Physics Laboratory

Joel Coffman
Associate Professor
United States Air Force Academy

Stacy D. Hill
Senior Professional Staff
JHU Applied Physics Laboratory

J. Miller Whisnant
Principal Professional Staff
JHU Applied Physics Laboratory

Brian Wilt
Senior Manager, Data Science

Facebook

Programs

- Data Science, Master of Science (https://e-catalogue.jhu.edu/engineering/engineering-professionals/data-science/data-science-master/)
- Data Science, Post-Master’s Certificate (https://e-catalogue.jhu.edu/engineering/engineering-professionals/data-science/data-science-post-masters-certificate/)

Courses

EN.685.621. Algorithms for Data Science. 3 Credits.
This course provides a survey of computer algorithms, examines fundamental techniques in algorithm design and analysis, and develops problem-solving skills required in all programs of study involving data science. Topics include advanced data structures for data science (tree structures, disjoint set data structures), algorithm analysis and computational complexity (recurrence relations, big-O notation, introduction to complexity classes (P, NP and NP-completeness)), data transformations (FFTs, principal component analysis), design paradigms (divide and conquer, greedy heuristic, dynamic programming), and graph algorithms (depth-first and breadth-first search, ordered and unordered trees). Advanced topics are selected from among the following: approximation algorithms, computational geometry, data preprocessing methods, data analysis, linear programming, multi-threaded algorithms, matrix operations, and statistical learning methods. The course will draw on applications from Data Science. Course Prerequisite(s): EN.605.201 Introduction to Programming Using Java or equivalent. EN.605.203 Discrete Mathematics or equivalent is recommended. Course Note(s): This required foundation course must be taken before other 605.xxx courses in the degree. This course does not satisfy the foundation course requirement for Bioinformatics, Computer Science, or Cybersecurity. Students can only earn credit for one of EN.605.620, EN.605.621, or EN.685.621.

EN.685.648. Data Science. 3 Credits.
This course will cover the core concepts and skills in the interdisciplinary field of data science. These include problem identification and communication, probability, statistical inference, visualization, extract/transform/load (ETL), exploratory data analysis (EDA), linear and logistic regression, model evaluation and various machine learning algorithms such as random forests, k-means clustering, and association rules. The course recognizes that although data science uses machine learning techniques, it is not synonymous with machine learning. The course emphasizes an understanding of both data (through the use of systems theory, probability, and simulation) and algorithms (through the use of synthetic and real data sets). The guiding principles throughout are communication and reproducibility. The course is geared towards giving students direct experience in solving the programming and analytical challenges associated with data science. The assignments weight conceptual (assessments) and practical (labs, problem sets) understanding equally. Prerequisite(s): A working knowledge of Python scripting and SQL is assumed as all assignments are completed in Python.
EN.685.652. Data Engineering Principles and Practice. 3 Credits.
This course will cover the core concepts and skills for data engineering with a focus on practical use cases. Data Engineering focuses on the ingestion, storage, transformation, and access of data in ways that enable data science applications to use and derive insight from data. Some of the topics that this course will touch on are dimensional modeling of data, non-relational data, data lakes, modern data warehouses, as well as different data modalities. The course will also cover some of the core supporting technologies in the data engineering world: data pipelines, containerization, schedulers, cloud technologies, and modern data engineering tools/stacks. The course is geared towards giving students direct experience in building solutions to problems associated with data engineering. The assignments will focus on the practical application of principles (labs, projects, assignments) while underscoring the understanding of the fundamental principles (assessments). Prerequisite(s): A working knowledge of Python scripting.

EN.685.795. Capstone Project in Data Science. 3 Credits.
This course permits graduate students in data science to work with a faculty mentor to explore a topic in depth or conduct research in selected areas. Requirements for completion include submission of a significant paper or project. Prerequisite(s): Seven data science graduate courses including two courses numbered 605.7xx or 625.7xx or admission to the post-master’s certificate program. Students must also have permission of a faculty mentor, the student’s academic advisor, and the program chair. Course Note(s): Students may not receive credit for both EN.685.802 Independent Study in Data Science II and EN.685.795.

EN.685.801. Independent Study in Data Science I. 3 Credits.
This course permits graduate students in data science to work with a faculty mentor to explore a topic in depth or conduct research in selected areas. Requirements for completion include submission of a significant paper suitable to be submitted for publication. Prerequisite(s): Seven data science graduate courses including two courses numbered 605.7xx or 625.7xx or admission to the post-master’s certificate program. Students must also have permission of a faculty mentor, the student’s academic advisor, and the program chair.

EN.685.802. Independent Study in Data Science II. 3 Credits.
Students wishing to take a second independent study in data science should sign up for this course. Prerequisite(s): EN.605.801 Independent Study in Data Science I and permission of a faculty mentor, the student’s academic advisor, and the program chair. Course Note(s): Students may not receive credit for both EN.685.795 Capstone Project in Data Science and EN.685.802.