ME.250 (MEDICINE)

Courses

ME.250.606. Medicine Core Clerkship.

ME.250.611. Genes to Society - Micro/Infectious Disease. 3 Credits.
4-week course with a focus on lecture, laboratory (both virtual and "wet" labs), small group exercises, team based learning and clinical correlations on bacteria, viruses, fungi, and parasites. Goal is for the student to build a strong foundation in infectious diseases.


ME.250.616. Advanced Clerkship in Critical Care - Medical Intensive Care at Johns Hopkins Bayview Medical Center.


ME.250.618. Advanced Clerkship in Critical Care - Coronary Intensive Care at Johns Hopkins Bayview Medical Center.

ME.250.619. Genes to Society - Immunology. 2 Credits.

ME.250.621. Advanced Ambulatory Clerkship.

ME.250.622. Genes to Society - Hematology.

ME.250.623. Organ Systems Foundations of Medicine: Pulmonary. 0 - 0 Credits.
M2 required course

ME.250.624. Organ Systems Foundations of Medicine: Renal. 0 - 0 Credits.

ME.250.625. Organ Systems Foundations of Medicine: Cardiovascular. 0 - 0 Credits.
M2 required course

ME.250.626. Organ Systems Foundations of Medicine: GI/Liver. 0 - 0 Credits.
M2 required course

ME.250.627. Organ Systems Foundations of Medicine: Endocrinology. 0 - 0 Credits.

ME.250.628. Organ Systems Foundations of Medicine: Musculoskeletal. 0 - 0 Credits.
M2 required course

ME.250.629. Scientific Foundations of Medicine: Genetics. 0 - 0 Credits.

ME.250.630. Scientific Foundations of Medicine: Metabolism. 0 - 0 Credits.


ME.250.633. Organ Systems Foundations of Medicine: Infectious Disease and Microbiology.

ME.250.680. Subinternship in Medicine.

ME.250.681. Subinternship in Medicine - Bayview Medical Center.

ME.250.682. Subinternship in Medicine - Hospitalist Service.

ME.250.683. Subinternship in Medicine – Hospitalist Service (JH Bayview Medical Center).

ME.250.684. Subinternship in Medicine at JH Howard County Medical Center.


ME.250.699. Medicine Elective.
Subinternship in Plastic Surgery

ME.250.703. Graduate Immunology. 4 Credits.
This course is offered as a major course for graduate students in the 3rd and 4th quarter to provide a comprehensive survey of modern cellular and molecular immunology. The content is delivered by lectures and small groups. The course is open to graduate students and postdoctoral fellows.

ME.250.714. HIV Biology. 1 Credit.
This course will review clinically relevant aspects of HIV biology including the discovery of HIV, the steps in the HIV life cycle, the dynamics of HIV replication in vivo, HIV pathogenesis, the immune response to HIV, the pharmacology of antiretroviral drugs, and the statues of efforts to cure HIV infection and develop an HIV vaccine.

ME.250.717. Control of Lymphocyte Apoptosis.

ME.250.718. Information Modeling. 0 - 10 Credits.

ME.250.721. Fundamentals of Immune Recognition. 1 Credit.

ME.250.722. Autoimmunity. 1 Credit.

ME.250.723. Immunometabolism. 1 Credit.
Immunometabolism is emerging as an important component of Immune cell regulation. Starting with understanding Warburg physiology the Course will examine key findings in this rapidly evolving field as they relate to basic immunology, autoimmunity, transplantation and immunotherapy for cancer.

ME.250.724. Translational Immunology. 1 Credit.
This graduate level advanced course focuses on the role of the immune system in human health and disease. It will expand upon basic immunologic principles to discuss the importance of the immune system both as a protector from and a cause of disease. Organ specific immune responses, human immune knockouts, and immune responses occurring in the setting of disease will be explored in a paired lecture and journal club format. This course is appropriate for graduate students and postdoctoral fellows who have completed a graduate level course in immunology.

ME.250.725. Immunology Forum. 1 Credit.
ME.250.785. Generative Artificial Intelligence (AI) and Ethics. 1.5 Credits.
This course is designed to bridge the gap between engineering and medicine by exploring the application of generative artificial intelligence (AI) technologies in healthcare settings. Through a combination of lectures, case studies, and hands-on projects, students will gain a comprehensive understanding of how generative AI can be leveraged to solve complex health-related problems, while also navigating the ethical, legal, and social implications of these technologies. The course will cover a range of topics, including but not limited to, the fundamentals of generative AI, its current and potential applications in healthcare, data privacy and security, ethical considerations in AI deployment, regulatory frameworks, and the impact of AI on patient care and healthcare systems.

ME.250.786. Mastering Quality Measures: Interpret, Design, Excel. 1.5 Credits.
This course will introduce the students to the world of healthcare quality measures. Participants will learn about the different ways to measure quality, the lifecycle of a quality measure, and how various programs use them. Students will translate measure specifications into outputs that can be used for downstream analytics. Through practice exercises, students will actively engage in codifying and interpreting quality measures. JHU students, faculty, and staff not matriculated in our formal degree or certificate programs must seek the instructor's permission.

ME.250.787. Data-Driven Design: Business Intelligence (BI) Visual Analytics. 1.5 Credits.
This course aims to familiarize students with the optimal approaches for crafting data visualizations suitable for both internal and external stakeholders. Participants will gain proficiency in the fundamentals of data visualization design, the scaling of visualizations, and the art of storytelling with data. Through practical exercises, students will actively engage in designing and constructing a comprehensive Business Intelligence (BI) dashboard. JHU students, faculty, and staff not matriculated in our formal degree or certificate programs must seek the instructor's permission.

ME.250.804. Introduction to Immunology Research (Parts I and II).
This course is designed to expose our first year students to the wide array of Immunology research that is offered here at Johns Hopkins. The course consists of two parts: Part 1. "Chalk Talks" A series of talks by the Immunology faculty to learn about research activities. Part 2. "Immunology Journal Club (IJC)" Created to provide them with an arena for reading and discussing journal articles with their peers. The purpose of the IJC is to help students develop the habit of reading a wide variety of immunology journal articles early and throughout the graduate career.

ME.250.861. Health Science Informatics Research Methods I. 1.5 Credits.
This course introduces students to the principles of health informatics research design and methods. Topics covered in this course include identifying health informatics research domains, designing informatics research, selecting appropriate informatics methods, integrating data science in informatics research, and, conducting literature and systematic reviews for health sciences informatics research.

ME.250.862. Health Sciences Informatics Research Methods II. 1.5 Credits.
This course introduces students to health informatics research methods and processes. Topics covered in this course include understanding clinical data and knowledge, reviewing specialized health informatics research topics, and conducting a quantitative informatics research project.

ME.250.863. Health Sciences Informatics Research Methods III. 1.5 Credits.
This course introduces students to advanced health informatics analytic methods. Topics covered include: understanding statistical methods used for health informatics research, conducting an advanced analytic project using complex clinical data repositories, and explaining the informatics challenges in the analytic process.

ME.250.864. Health Sciences Informatics Research Methods IV. 1.5 Credits.
This course introduces students to scientific dissemination methods and career development in health informatics research. Topics covered include: authoring informatics research manuscripts for publication, preparing informatics research grants, and career development options and strategies.