EN.601 (COMPUTER SCIENCE)

EN.601.104. Computer Ethics. 1 Credit.
Students will examine a variety of topics regarding policy, legal, and moral issues related to the computer science profession itself and to the proliferation of computers in all aspects of society, especially in the era of the Internet. The course will cover various general issues related to ethical frameworks and apply those frameworks more specifically to the use of computers and the Internet. The topics will include privacy issues, computer crime, intellectual property law -- specifically copyright and patent issues, globalization, and ethical responsibilities for computer science professionals. Work in the course will consist of weekly assignments on one or more of the readings and a final paper on a topic chosen by the student and approved by the instructor.

EN.601.105. CS First-year Experience. 1 Credit.
This course provides first-year computer science majors with an introduction to the field and department. A variety of faculty members will lead weekly small group discussion sections on topics of interest related to the discipline. Upper-year majors will serve as peer mentors for each group (enrollment by permission only). Satisfactory/Unsatisfactory only; counts as elective credits only, not towards CS course credit requirement.

EN.601.124. The Ethics of Artificial Intelligence and Automation. 3 Credits.
The expansion of artificial intelligence (AI)-enabled use cases across a broad spectrum of domains has underscored the benefits and risks of AI. This course will address the various ethical considerations engineers need to engage with to build responsible and trustworthy AI-enabled autonomous systems. Topics to be covered include: values-based decision making, ethically aligned design, cultural diversity, safety, bias, AI explainability, privacy, AI regulation, the ethics of synthetic life, and the future of work. Case studies will be utilized to illustrate real-world applications. Students will apply learned material to a group research project on a topic of their choice.

EN.601.220. Intermediate Programming. 4 Credits.
This course teaches intermediate to advanced programming, using C and C++. (Prior knowledge of these languages is not expected.) We will cover low-level programming techniques, as well as object-oriented class design, and the use of class libraries. Specific topics include pointers, dynamic memory allocation, polymorphism, overloading, inheritance, templates, collections, exceptions, and others as time permits. Students are expected to learn syntax and some language specific features independently. Course work involves significant programming projects in both languages. (EN.500.132 OR EN.500.133 OR EN.500.134) OR (EN.500.112 OR EN.500.113 OR EN.500.114)

EN.601.226. Data Structures. 4 Credits.
This course covers the design and implementation of data structures including arrays, stacks, queues, linked lists, binary trees, heaps, balanced trees (e.g. 2-3 trees, AVL-trees) and graphs. Other topics include sorting, hashing, memory allocation, and garbage collection. Course work involves both written homework and Java programming assignments. EN.500.132 OR (EN.500.112 or EN.601.220) or AP Computer Science or equivalent.

EN.601.229. Computer System Fundamentals. 3 Credits.
We study the design and performance of a variety of computer systems from simple 8-bit micro-controllers through 32/64-bit RISC architectures all the way to ubiquitous x86 CISC architecture. We'll start from logic gates and digital circuits before delving into arithmetic and logic units, registers, caches, memory, stacks and procedure calls, pipelined execution, super-scalar architectures, memory management units, etc. Along the way we'll study several typical instruction set architectures and review concepts such as interrupts, hardware and software exceptions, serial and other peripheral communications protocols, etc. A number of programming projects, frequently done in assembly language and using various processor simulators, round out the course. [Systems]. EN.600.120/EN.601.220

EN.601.230. Mathematical Foundations for Computer Science. 4 Credits.
This course provides an introduction to mathematical reasoning and discrete structures relevant to computer science. Topics include propositional and predicate logic, proof techniques including mathematical induction, sets, relations, functions, recurrences, counting techniques, simple computational models, asymptotic analysis, discrete probability, graphs, trees, and number theory. EN.500.112 OR EN.500.113 OR EN.500.114 OR EN.500.132 OR EN.500.133 OR EN.500.134 OR EN.601.220; Student may not enroll if taken EN.601.231.

EN.601.231. Automata & Computation Theory. 3 Credits.
This course is an introduction to the theory of computing. topics include design of finite state automata, pushdown automata, linear bounded automata, Turing machines and phrase structure grammars; correspondence between automata and grammars; computable functions, decidable and undecidable problems, P and NP problems, NP-completeness, and randomization. EN.550.171/EN.553.171 OR EN.553.172; Students may not enroll if taken EN.601.230.

EN.601.270. Open Source Software Engineering (Semesters of Code I). 3 Credits.
The course will provide students a development experience focused on learning software engineering skills to deliver software at scale to a broad community of users associated with open source licensed projects. The class work will introduce students to ideas behind open source software with structured modules on recognizing and building healthy project structure, intellectual property basics, community & project governance, social and ethical concerns, and software economics. EN.601.220 AND EN.601.226

EN.601.277. Disinformation Self-Defense. 3 Credits.
Scientific, statistical and logical literacy is a necessary skill for evaluating policy proposals, reading news articles with an appropriately critical eye, and making informed choices as consumers and voters. Misunderstanding of claims made in scientific publications, online publishing platforms, and mass media drives, in part, the spread of malicious misinformation and propaganda online. Further, many actors have the means, the motive and the opportunity to mislead the public in a variety of subtle and not so subtle ways. This class will give you tools to discern valid and invalid forms of inference and discourse, and give you tools to communicate precisely, argue appropriately, and stay on top of research and news with an appropriately skeptical attitude. The class will draw on historical and modern literature on linguistic, logical, and probabilistic fallacies, statistical and logical inference, data visualization, cognitive biases, and the scientific method. (EN.553.171 OR EN.553.172) OR AS.150.118
EN.601.280. Full-Stack JavaScript. 3 Credits.
A full-stack JavaScript developer is a person who can build modern software applications using primarily the JavaScript programming language. Creating a modern software application involves integrating many technologies - from creating the user interface to saving information in a database and everything else in between and beyond. A full-stack developer is not an expert in everything. Rather, they are someone who is familiar with various (software application) frameworks and the ability to take a concept and turn it into a finished product. This course will teach you programming in JavaScript and introduce you to several JavaScript frameworks that would enable you to build modern web, cross-platform desktop, and native/hybrid mobile applications. A student who successfully completes this course will be on the expedited path to becoming a full-stack JavaScript developer.
EN.601.220 OR EN.601.226

EN.601.290. User Interfaces and Mobile Applications. 3 Credits.
This course will provide students with a rich development experience, focused on the design and implementation of user interfaces and mobile applications. A brief overview of human computer interaction will provide context for designing, prototyping and evaluating user interfaces. Students will invent their own mobile applications and implement them using the Android SDK, which is JAVA based. An overview of the Android platform and available technologies will be provided, as well as XML for layouts, and general concepts for effective mobile development. Students will be expected to explore and experiment with outside resources in order to learn technical details independently. There will also be an emphasis on building teamwork skills, and on using modern development techniques and tools.
EN.600.120 AND EN.600.226

EN.601.295. Developing Health IT Applications. 3 Credits.
This course is a project-based introduction to working on successful projects in health care. In the first half of the term, students perform reading and homework assignments designed to introduce: (1) the context of health care delivery and health IT, (2) techniques to overcome challenges to conducting health care data analyses, and (3) techniques to design meaningful applications around health care data. In the second half of the term, students work in small groups to solve a real-world problem of their choosing. Includes exercises in written and oral communication and team building. [Oral starting 2019]
(EN.600.120 OR EN.601.220) AND (EN.600.226 OR EN.601.226)

EN.601.310. Software for Resilient Communities. 3 Credits.
This is a project-based course focusing on the design and implementation of practical software systems. Students will work in small teams to design and develop useful open-source software products that support our communities. Students will be paired with community partners and will aim to develop software that can be used after the course ends to solve real problems facing those partners today. Instructors will connect with the community partners and determine viable project areas prior to the course start. Students will meet with their community partners to analyze the challenges in their project area, agree on a concrete target project outcome, and gather requirements for their project. Based on these requirements, students will design and implement open-source software systems. [Oral]
EN.600.120/EN.601.220 AND EN.600.226/EN.601.226

EN.601.315. Databases. 3 Credits.
Introduction to database management systems and database design, focusing on the relational and object-oriented data models, query languages and query optimization, transaction processing, parallel and distributed databases, recovery and security issues, commercial systems and case studies, heterogeneous and multimedia databases, and data mining. [Systems]
EN.600.226/EN.601.226; Students may receive credit for only one of EN.600.315, EN.600.415, EN.601.315, EN.601.415, EN.601.615.

EN.601.318. Operating Systems. 3 Credits.
This course covers fundamental topics related to operating systems theory and practice. Topics include processor management, storage management, concurrency control, multi-programming and processing, device drivers, operating system components (e.g., file system, kernel), modeling and performance measurement, protection and security, and recent innovations in operating system structure. Course work includes the implementation of operating systems techniques and routines, and critical parts of a small but functional operating system.
EN.600.120/EN.601.220 AND EN.600.226/EN.601.226 AND EN.600.233/EN.601.229; Students may receive credit for only one of EN.600.318, EN.600.418, EN.601.318, EN.601.418, EN.601.618.

EN.601.320. Parallel Programming. 3 Credits.
This course prepares the programmer to tackle the massive data sets and huge problem size of modern scientific and enterprise computing. Google and IBM have commented that undergraduate CS majors are unable to "break the single server mindset" (http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.html). Students taking this course will abandon the comfort of serial algorithmic thinking and learn to harness the power of cutting-edge software and hardware technologies. The issue of parallelism spans many architectural levels. Even "single server" systems must parallelize computation in order to exploit the inherent parallelism of recent multi-core processors. The course will examine different forms of parallelism in four sections. These are: (1) massive data-parallel computations with Hadoop; (2) programming compute clusters with MPI; (3) thread-level parallelism in Java; and, (4) GPGPU parallel programming with NVIDIA’s Cuda. Each section will be approximately 3 weeks and each section will involve a programming project. The course is also suitable for undergraduate and graduate students from other science and engineering disciplines that have prior programming experience. [Systems]
EN.600.226/EN.601.226 AND EN.600.233/EN.601.229; Students may receive credit for only one of EN.600.320, EN.600.420, EN.601.320, EN.601.420, EN.601.620.

EN.601.340. Web Security. 3 Credits.
This course begins with reviewing basic knowledge of the World Wide Web, and then exploring the central defense concepts behind Web security, such as same-origin policy, cross-origin resource sharing, and browser sandboxing. It will cover the most popular Web vulnerabilities, such as cross-site scripting (XSS) and SQL injection, as well as how to attack and penetrate software with such vulnerabilities. Students will learn how to detect, respond, and recover from security incidents. Newly proposed research techniques will also be discussed. [Systems]
(EN.600.226 OR EN.601.226) AND (EN.600.233 OR EN.601.229)
Students may receive credit for EN.601.456 or EN.601.356, but not both.
Lecture only version of EN.601.456 (no project). Recommended Course Background:
EN.601.455 or instructor permission required.
EN.601.455 or instructor permission.; Students may receive credit for either EN.601.356 or EN.601.456, but not both.

EN.601.402. Digital Health and Biomedical Informatics. 1 Credit.
Advances in technology are driving a change in medicine, from
personalized medicine to population health. Computers and information
technology will be critical to this transition. We shall discuss some of the
coming changes in terms of computer technology, including computer-
based patient records, clinical practice guidelines, and region-wide health
information exchanges. We will discuss the underlying technologies
driving these developments - databases and warehouses, controlled
vocabularies, and decision support.

EN.601.411. Computer Science Innovation & Entrepreneurship II. 3 Credits.
This course is the second half of a two-course sequence and
is a continuation of course EN.660.410.01, CS Innovation and
Entrepreneurship, offered by the Center for Leadership Education (CLE).
In this sequel course the student groups, directed by CS faculty, will
implement the business idea which was developed in the first course
and will present the implementations and business plans to an outside
panel made up of practitioners, industry representatives, and venture
capitalists. [General] EN.660.410

EN.601.414. Computer Networks. 3 Credits.
Topics covered will include application layer protocols (e.g. HTTP, FTP,
SMTP), transport layer protocols (UDP, TCP), network layer protocols (e.g.
IP, ICMP), link layer protocols (e.g. Ethernet) and wireless protocols (e.g.
IEEE 802.11). The course will also cover routing protocols such as link
state and distance vector, multicast routing, and path vector protocols
(e.g. BGP). The class will examine security issues such as firewalls and
denial of service attacks. We will also study DNS, NAT, Web caching and
CDNs, peer to peer, and protocol tunneling. Finally, we will explore security
protocols (e.g. TLS, SSH, IPsec), as well as some basic cryptography
necessary to understand these. Grading will be based on hands-on
programming assignments, homeworks and two exams. [Systems]
EN.601.226 AND EN.601.229 or permission.; Students may receive credit
for only one of EN.600.344, EN.600.444, EN.601.414, EN.601.614.

EN.601.415. Databases. 3 Credits.
Similar material as EN.601.315 covered in more depth for advanced
undergraduates. Introduction to database management systems and
database design, focusing on the relational and object-oriented data
models, query languages and query optimization, transaction processing,
parallel and distributed databases, recovery and security issues,
commercial systems and case studies, heterogeneous and multimedia
databases, and data mining. [Systems] (www.cs.jhu.edu/~yarowsky/
cs415.html)
EN.600.226/EN.601.226;Students may receive credit for only one of
EN.600.315, EN.600.415, EN.601.315, EN.601.415, EN.601.615.

EN.601.417. Distributed Systems. 3 Credits.
Graduate version of 601.317 Systems. Students may receive credit for
601.317 or 601.417 but not both. Recommended Course Background:
EN.601.220, EN.601.226
Students may receive credit for only one of 417/617;(EN.600.120 OR
EN.601.220) AND (EN.600.226 OR EN.601.226)

EN.601.418. Operating Systems. 3 Credits.
Similar material as EN.601.318, covered in more depth. Intended for
advanced undergraduate students. This course covers fundamental
topics related to operating systems theory and practice. Topics include
processor management, storage management, concurrency control,
multi-programming and processing, device drivers, operating system
components (e.g., file system, kernel), modeling and performance
measurement, protection and security, and recent innovations in
operating system structure. Course work includes the implementation of
operating systems techniques and routines, and critical parts of a small
but functional operating system.
EN.600.120/EN.601.220 AND EN.600.226/EN.601.226 AND EN.600.233/
EN.601.229;Students may receive credit for only one of EN.600.318,
EN.601.418, EN.601.318, EN.601.418, EN.601.618.

EN.601.419. Cloud Computing. 3 Credits.
Clouds host a wide range of the applications that we rely on today. In
this course, we study common cloud applications, traffic patterns that
they generate, critical networking infrastructures that support them,
and core networking and distributed systems concepts, algorithms,
and technologies used inside clouds. We will also study how today's
application demand is influencing the network's design, explore current
practice, and how we can build future's networked infrastructure to better
enable both efficient transfer of big data and low-latency requirements
of real-time applications. The format of this course will be a mix of
lectures, discussions, assignments, and a project designed to help
students practice and apply the theories and techniques covered in the
course. [Systems] Prerequisites: EN.601.226 or permission. Students can
only receive credit for one of 601.419/619. Recommended: a course in
operating systems, networks or systems programming.
EN.601.226 (or EN.600.226) AND EN.601.414 or permission from the
instructor.; Students may earn credit for EN.601.419 or EN.601.619, but
not both.
EN.601.420. Parallel Computing for Data Science. 3 Credits.
This course studies parallelism in data science, drawing examples from
data analytics, statistical programming, and machine learning. It focuses
mostly on the Python programming ecosystem but will use C/C++ to
accelerate Python and Java to explore shared-memory threading. It
explores parallelism at all levels, including instruction level parallelism
(pipelining and vectorization), shared-memory multicore, and distributed
computing. Concepts from computer architecture and operating systems
will be developed in support of parallelism, including Moore's law, the
memory hierarchy, caching, processes/threads, and concurrency control.
The course will cover modern data-parallel programming frameworks,
including Dask, Spark, Hadoop!, and Ray. The course will not cover GPU
deep-learning frameworks nor CUDA. The course is suitable for second-
year undergraduate CS majors and graduate students from other science
and engineering disciplines that have prior programming experience and
familiarity with Python. [Systems]
EN.601.226 AND EN.601.229; Students may receive credit for only one of
EN.600.320, EN.600.420, EN.601.320, EN.601.420, EN.601.620.

EN.601.421. Object Oriented Software Engineering. 3 Credits.
This course covers object-oriented software construction methodologies
and their application. The main component of the course is a large
team project on a topic of your choosing. Course topics covered include
object-oriented analysis and design, UML, design patterns, refactoring,
program testing, code repositories, team programming, and code reviews. [Systems or Applications]
EN.601.220 AND EN.601.226 AND (EN.601.280 OR EN.601.290); Students
may receive credit for only one of EN.600.321, EN.600.421, EN.601.421,
EN.601.621.

EN.601.422. Software Testing & Debugging. 3 Credits.
Studies show that testing can account for over 50% of software
development costs. This course presents a comprehensive study of
software testing, principles, methodologies, tools, and techniques. Topics
include testing principles, coverage (graph coverage, logic coverage, input
space partitioning, and syntax-based coverage), unit testing, higher-order
testing (integration, system-level, acceptance), testing approaches (white-
box, black-box, grey-box), regression testing, debugging, delta debugging,
and several specific types of functional and non-functional testing as
schedule/interest permits (GUI testing, usability testing, security testing,
load/performance testing, A/B testing etc.). For practical topics, state-
of-the-art tools/techniques will be studied and utilized. [Systems]
EN.601.290 OR EN.601.421; Students can take EN.601.422 or EN.601.622,
but not both.

EN.601.424. Reliable Software Systems. 3 Credits.
Reliability is an essential quality requirement for all artifacts operating in
the real-world, ranging from bridges, cars to power grids. Software
systems are no exception. In this computing age when software is
transforming even traditional mission-critical artifacts, making sure
the software we write is reliable becomes ever more important. This
course exposes students to the principles and techniques in building
reliable systems. We will study a set of systematic approaches to make
software more robust. These include but are not limited to static analysis,
testing framework, model checking, symbolic execution, fuzzing, and
formal verification. In addition, we will cover the latest research in system
reliability.
EN.601.220 AND (EN.601.328 OR EN.601.428)

EN.601.426. Principles of Programming Languages. 3 Credits.
Functional, object-oriented, and other language features are studied
independently of a particular programming language. Students become
familiar with these features by implementing them. Most of the
implementations are in the form of small language interpreters. Some
type checkers and a small compiler will also be written. The total amount
of code written will not be overly large, as the emphasis is on concepts.
The ML programming language is the implementation language used. [Analysis] Prerequisites include EN.601.226. No Freshmen or
Sophomores.
EN.601.226

EN.601.427. Principles of Programming Languages II. 3 Credits.
This course is designed as a follow-on to Principles of Programming
languages. It will cover a wide array of fundamental topics in
programming languages, including advanced functional programming,
the theory of inductive definitions, advanced operational semantics,
advanced type systems, program analysis, program verification, theorem
provers and SAT solvers. [Analysis]
EN.601.426

EN.601.428. Compilers & Interpreters. 3 Credits.
Introduction to compiler design, including lexical analysis, parsing,
syntax-directed translation, symbol tables, runtime environments, and
code generation and optimization. Students are required to write a
compiler as a course project. [Systems]
EN.600.120/EN.601.220 AND EN.600.226/EN.601.226 AND EN.600.233/
EN.601.229

EN.601.429. Functional Programming in Software Engineering. 3
Credits.
How can we effectively use functional programming techniques to build
real-world software? This course will primarily focus on using the OCaml
programming language for this purpose. Topics covered include OCaml
basics, modules, standard libraries, testing, quickcheck, build tools,
functional data structures and efficiency analysis, monads, streams, and
promises. Students will practice what they learn in lecture via functional
programming assignments and a final project.
EN.601.226 OR Instructor Permission

EN.601.430. Combinatorics & Graph Theory in Computer Science. 3
Credits.
This is a graduate level course studying the applications of
combinatorics and graph theory in computer science. We will start
with some basic combinatorial techniques such as counting and
pigeon hole principle, and then move to advanced techniques such as
the probabilistic method, spectral graph theory and additive
combinatorics. We shall see their applications in various areas in
computer science, such as proving lower bounds in computational
models, randomized algorithms, coding theory and pseudorandomness. [Analysis] Recommended Course Background: probability theory and
linear algebra
EN.553.171 OR EN.553.172 OR EN.550.171; probability theory and linear
algebra recommended. Students may receive credit for only one of
430/630
EN.601.433. Intro Algorithms. 3 Credits.
This course concentrates on the design of algorithms and the rigorous analysis of their efficiency. Topics include the basic definitions of algorithmic complexity (worst case, average case); basic tools such as dynamic programming, sorting, searching, and selection; advanced data structures and their applications (such as union-find); graph algorithms and searching techniques such as minimum spanning trees, depth-first search, shortest paths, design of online algorithms and competitive analysis. [Analysis]
EN.601.226 AND (EN.553.171 OR EN.553.172 OR EN.601.230 OR EN.601.231);Students may receive credit for only one of EN.600.363, EN.600.463, EN.601.433, EN.601.633.

EN.601.434. Randomized and Big Data Algorithms. 3 Credits.
The course emphasizes algorithmic design aspects, and how randomization can be a helpful tool. The topics covered include: tail inequalities, linear programming relaxation & randomized rounding, de-randomization, existence proofs, universal hashing, markov chains, metropolis and metropolis-hastings methods, mixing by coupling and by eigenvalues, counting problems, semi-definite programming and rounding, lower bound arguments, and applications of expanders. [Analysis] (www.cs.jhu.edu/~cs464) Recommended Course Background: Probability ((EN.600.363 OR EN.600.463) OR (EN.601.433 OR EN.601.633)) AND (EN.550.310 OR EN.553.310 OR EN.553.311 OR EN.550.420 OR EN.550.620) or equivalent.;Students may receive credit for only one of EN.600.464, EN.600.664, EN.601.434, EN.601.634.

EN.601.435. Approximation Algorithms. 3 Credits.
This course provides an introduction to approximation algorithms. Topics include vertex cover, TSP, Steiner trees, cuts, greedy approach, linear and semi-definite programming, primal-dual method, and randomization. Additional topics will be covered as time permits. There will be a final project. Students may receive credit for EN.601.435 or EN.601.635, but not both. [Analysis] EN.600.363 OR EN.601.433 OR EN.601.633 OR permission.

EN.601.436. Algorithmic Game Theory. 3 Credits.
This course provides an introduction to algorithmic game theory: the study of games from the perspective of algorithms and theoretical computer science. There will be a particular focus on games that arise naturally from economic interactions involving computer systems (such as economic interactions between large-scale networks, online advertising markets, etc.), but there will also be broad coverage of games and mechanisms of all sorts. Topics covered will include a) complexity of computing equilibria and algorithms for doing so, b) (in)efficiency of equilibria, and c) algorithmic mechanism design. [Analysis]
EN.600.363 OR EN.600.463 OR EN.601.433 OR EN.601.633

EN.601.437. Federated Learning and Analytics. 3 Credits.
Federated Learning (FL) is an area of machine learning where data is distributed across multiple devices and training is performed without exchanging the data between devices. FL can be contrasted with classical machine learning settings when data is available in a central location. As such, FL faces additional challenges and limitations such as privacy and communication. For example, FL may deal with questions of learning from sensitive data on mobile devices while protecting privacy of individual users and dealing with low power and limited communication. As a result, FL requires knowledge of many interdisciplinary areas such as differential privacy, distributed optimization, sketching algorithms, compression and more. In this course students will learn basic concepts and algorithms for FL and federated analytics, and gain hands-on experience with new methods and techniques. Students will gain understanding in reasoning about possible trade-offs between privacy, accuracy and communication. [Analysis] ML: DL, linear algebra, probability
EN.601.433/EN.601.633 AND (EN.601.464/EN.601.664 OR EN.601.475/EN.601.675);Students may only earn credit for EN.601.437 OR EN.601.637.

EN.601.440. Web Security. 3 Credits.
This course begins with reviewing basic knowledge of the World Wide Web, and then exploring the central defense concepts behind Web security, such as same-origin policy, cross-origin resource sharing, and browser sandboxing. It will cover the most popular Web vulnerabilities, such as cross-site scripting (XSS) and SQL injection, as well as how to attack and penetrate software with such vulnerabilities. Students will learn how to detect, respond, and recover from security incidents. Newly proposed research techniques will also be discussed. [Systems] (EN.601.226 OR EN.600.226) AND (EN.601.229 OR EN.600.233);Students may receive credit for only one of 340/440/640.

EN.601.441. Blockchains and Cryptocurrencies. 3 Credits.
This course will introduce students to cryptocurrencies and the main underlying technology of Blockchains. The course will start with the relevant background in cryptography and then proceed to cover the recent advances in the design and applications of blockchains. This course should primarily appeal to students who want to conduct research in this area or wish to build new applications on top of blockchains. It should also appeal to those who have a casual interest in this topic or are generally interested in cryptography. Students are expected to have mathematical maturity. [Analysis]
EN.601.226 AND (EN.553.211 OR EN.553.310 OR EN.553.311 OR EN.560.348 OR EN.553.420);Students may receive credit for only one of EN.600.451 OR EN.601.441 OR EN.601.641

EN.601.442. Modern Cryptography. 3 Credits.
Modern Cryptography includes seemingly paradoxical notions such as communicating privately without a shared secret, proving things without leaking knowledge, and computing on encrypted data. In this challenging but rewarding course we will start from the basics of private and public key cryptography and go all the way up to advanced notions such as zero-knowledge proofs, functional encryption and program obfuscation. The class will focus on rigorous proofs and require mathematical maturity. [Analysis]
Students may receive credit for only one of EN.600.442, EN.601.442, EN.601.642.;(EN.601.230 OR EN.601.231) AND (EN.553.310 OR EN.553.311 OR EN.553.420 OR EN.553.421)
EN.601.443. Security & Privacy in Computing. 3 Credits.
Lecture topics will include computer security, network security, basic cryptography, system design methodology, and privacy. There will be a heavy workload, including written homework, programming assignments, exams and a comprehensive final. The class will also include a semester-long project that will be done in teams and will include a presentation by each group to the class. [Applications] Recommended Course Background: A basic course in operating systems and networking, or permission of instructor.
Students may receive credit for only one of EN.600.443, EN.601.443, EN.601.643; (EN.600.318/EN.601.318 OR EN.600.418/EN.601.418) OR (EN.600.344 OR EN.600.444/EN.601.414) AND (EN.600.233 OR EN.601.229)

EN.601.444. Network Security. 3 Credits.
This course focuses on communication security in computer systems and networks. The course is intended to provide students with an introduction to the field of network security. The course covers network security services such as authentication and access control, integrity and confidentiality of data, firewalls and related technologies, Web security and privacy. Course work involves implementing various security techniques. A course project is required. [Systems] EN.600.120 AND EN.600.226 AND (EN.600.344 OR EN.600.444) or permission; Students may receive credit for only one of EN.600.424, EN.650.424, EN.601.444, EN.601.644.

EN.601.445. Practical Cryptographic Systems. 3 Credits.
This semester-long course will teach systems and cryptographic design principles by example: by studying and identifying flaws in widely-deployed cryptographic products and protocols. Our focus will be on the techniques used in practical security systems, the mistakes that lead to failure, and the approaches that might have avoided the problem. We will place a particular emphasis on the techniques of provable security and the feasibility of reverse-engineering undocumented cryptographic systems. [Systems] Students may receive credit for only one of EN.600.454, EN.601.445, EN.601.645; EN.600.226/EN.601.226 AND EN.600.233/EN.601.229

EN.601.446. Sketching and Indexing for Sequences. 3 Credits.
Many of the world's largest and fastest-growing datasets are text, e.g. DNA sequencing data, web pages, logs and social media posts. Such datasets are useful only to the degree we can query, compare and analyze them. Here we discuss two powerful approaches in this area. We will cover sketching, which enables us to summarize very large texts in small structures that allow us to measure the sizes of sets and of their unions and intersections. This in turn allows us to measure similarity and find near neighbors. Second, we will discuss indexing — succinct and compressed indexes in particular — which enables us to efficiently search inside very long strings, especially in highly repetitive texts. [Analysis] EN.601.226

EN.601.447. Computational Genomics: Sequences. 3 Credits.
Your genome is the blueprint for the molecules in your body. It's also a string of letters (A, C, G and T) about 3 billion letters long. How does this string give rise to you? Your heart, your brain, your health? This, broadly speaking, is what genomics research is about. This course will familiarize you with a breadth of topics from the field of computational genomics. The emphasis is on current research problems, real-world genomics data, and efficient software implementations for analyzing data. Topics will include: string matching, sequence alignment and indexing, assembly, and sequence models. Course will involve significant programming projects. [Applications] EN.600.120/EN.601.220 AND EN.600.226/EN.601.226; Students may receive credit for only one of EN.600.439, EN.600.639, EN.601.447, EN.601.647.

EN.601.448. Computational Genomics: Data Analysis. 3 Credits.
Genomic data has the potential to reveal causes of disease, novel drug targets, and relationships among genes and pathways in our cells. However, identifying meaningful patterns from high-dimensional genomic data has required development of new computational tools. This course will cover current approaches in computational analysis of genomic data with a focus on statistical methods and machine learning. Topics will include disease association, prediction tasks, clustering and dimensionality reduction, data integration, and network reconstruction. There will be some programming and a project component. [Applications] Prerequisites: EN.601.226 or other programming experience, probability and statistics, linear algebra or calculus. Students may receive credit for only one of EN.600.438, EN.600.638, EN.601.448, EN.601.648.

EN.601.449. Computational Genomics: Applied Comparative Genomics. 3 Credits.
The goal of this course is to study the leading computational and quantitative approaches for comparing and analyzing genomes starting from raw sequencing data. The course will focus on human genomics and human medical applications, but the techniques will be broadly applicable across the tree of life. The topics will include genome assembly & comparative genomics, variant identification & analysis, gene expression & regulation, personal genome analysis, and cancer genomics. The grading will be based on assignments, a midterm exam, class presentations, and a significant class project. Prerequisites: knowledge of the Unix operating system and programming expertise in a language such as R or Python. [Applications] Students may receive credit for only one of EN.600.449, EN.600.649, EN.601.749.

EN.601.452. Computational Biomedical Research. 3 Credits.
[Co-listed with AS.020.415] This course for advanced undergraduates includes classroom instruction in interdisciplinary research approaches and lab work on an independent research project in the lab of a Bloomberg Distinguished Professor and other distinguished faculty. Lectures will focus on cross-cutting techniques such as data visualization, statistical inference, and scientific computing. In addition to two 50-minute classes per week, students will commit to working approximately 3 hours per week in the lab of one of the professors. The student and professor will work together to schedule the research project. Students will present their work at a symposium at the end of the semester.
EN.601.454. Augmented Reality. 3 Credits.
Same as EN.601.654, for undergraduate students. This course introduces students to the field of Augmented Reality. It reviews its basic definitions, principles and applications. It then focuses on Medical Augmented Reality and its particular requirements. The course also discusses the main issues of calibration, tracking, multi-modal registration, advance visualization and display technologies. Homework in this course will relate to the mathematical methods used for calibration, tracking and visualization in medical augmented reality. [Applications]
EN.601.220 AND EN.601.226 AND (AS.110.201 OR AS.110.212 OR EN.550.291). Students may receive credit for only one of EN.600.484, EN.600.454, EN.601.654.

EN.601.455. Computer Integrated Surgery I. 4 Credits.
This course focuses on computer-based techniques, systems, and applications exploiting quantitative information from medical images and sensors to assist clinicians in all phases of treatment from diagnosis to preoperative planning, execution, and follow-up. It emphasizes the relationship between problem definition, computer-based technology, and clinical application and includes a number of guest lectures given by surgeons and other experts on requirements and opportunities in particular clinical areas. Recommended Course Background: EN.601.220, EN.601.457, EN.601.461, image processing.
Students may receive credit for only one of EN.600.445, EN.600.645, EN.601.455, EN.601.655, EN.600.226/EN.601.226 AND (AS.110.201 OR AS.110.212 OR EN.553.291) or permission of the instructor.

EN.601.456. Computer Integrated Surgery II. 3 Credits.
This weekly lecture/seminar course addresses similar material to EN.601.455, but covers selected topics in greater depth. In addition to material covered in lectures/seminars by the instructor and other faculty, students are expected to read and provide critical analysis/presentations of selected papers in recitation sessions. Students taking this course are required to undertake and report on a significant term project under the supervision of the instructor and clinical end users. Typically, this project is an extension of the term project from EN.610.455, although it does not have to be. Grades are based both on the project and on classroom recitations. Students who wish to use this course to satisfy the "Team" requirement should register for EN.601.496 instead. Students wishing to attend the weekly lectures as a 1-credit seminar should sign up for EN.601.456. [Applications, Oral]
EN.601.455 or EN.601.655 or permission; Students may receive credit for only one of EN.600.446, EN.600.646, EN.601.456, EN.601.656.

EN.601.457. Computer Graphics. 3 Credits.
This course introduces computer graphics techniques and applications, including image processing, rendering, modeling and animation. [Applications]
EN.600.120/601.220 AND EN.600.226/601.226, and linear algebra or permission of instructor. Students may receive credit for only one of EN.600.357, EN.600.457, EN.601.457, EN.601.657.

EN.601.459. Computational Geometry. 3 Credits.
This course will provide an introduction to computational geometry. It will cover a number of topics in two- and three-dimensions, including polygon triangulations and partitions, convex hulls, Delaunay and Voronoi diagrams, arrangements, and spatial queries. Time-permitting, we will also look at kD-trees, general BSP-trees, and quadtreed. [Analysis]
EN.600.120/EN.601.220 AND EN.600.226/EN.601.226 AND (EN.600.363 OR EN.600.463/EN.601.433 OR EN.601.633)

EN.601.461. Computer Vision. 3 Credits.
This course provides an overview of fundamental methods in computer vision from a computational perspective. Methods studied include: camera systems and their modelling, computation of 3-D geometry from binocular stereo, motion, and photometric stereo, and object recognition, image segmentation, and activity analysis. Elements of machine vision and biological vision are also included. Students may receive credit for only one of EN.600.361, EN.600.461, EN.600.661, EN.601.461, EN.601.661. (EN.553.310 OR EN.553.311 OR ((EN.553.420 OR EN.553.421) AND (EN.553.430 OR EN.553.431)) OR EN.560.348) AND (AS.110.201 OR AS.110.212 OR EN.553.291) AND (EN.500.112 OR EN.500.113 OR EN.500.114 OR EN.601.220 AS.250.205)

EN.601.462. Introduction to Spatial Computing. 3 Credits.
This course will provide students with a rich understanding of immersive technology and spatial computing as the next wave of computing after personal and mobile computing, and belongs to the devices that can sense the space or are “spatially” aware. It also covers input systems and interaction modalities that have evolved to support human-computer interaction required for immersive environments. It will go through principles of design thinking as a mindset for creating immersive experiences, and students will explore the practical implication of this subject in healthcare, industry, and society through the projects. Background in Computer Vision (EN.601.461/661) is strongly recommended. [Applications]
EN.601.220 AND EN.601.226 AND (AS.110.201 OR AS.110.212 OR EN.553.291)

EN.601.463. Algorithms for Sensor-Based Robotics. 3 Credits.
This course surveys the development of robotic systems for navigating in an environment from an algorithmic perspective. It will cover basic kinematics, configuration space concepts, motion planning, and localization and mapping. It will describe these concepts in the context of the ROS software system, and will present examples relevant to mobile platforms, manipulation, robotics surgery, and human-machine systems. [Analysis]
(AS.110.201 OR AS.110.212) AND AS.110.202 AND EN.601.226; Students may receive credit for only one of EN.600.336, EN.600.436, EN.600.636, EN.601.463, EN.601.663, (EN.553.310 OR EN.553.311 OR EN.553.420)

EN.601.464. Artificial Intelligence. 3 Credits.
This course is recommended for scientists and engineers with a genuine curiosity about the fundamental obstacles in getting machines to perform tasks such as deduction, learning, planning and navigation. It covers methods for automated reasoning, automatic problem solvers, planners, knowledge representation mechanisms, game playing, machine learning, and statistical pattern recognition. Strong programming skills are expected, as well as basic familiarity with probability. Students intending to also take courses in machine learning (e.g. 601.475/675, 601.476/676, 601.482/682) may find it beneficial to take this course first, or concurrently. [Applications]
Students may receive credit for only one of EN.600.335, EN.600.435, EN.601.464, EN.601.664, EN.600.226/EN.601.226
EN.601.465. Natural Language Processing. 4 Credits.
This course is an in-depth overview of techniques for processing human language. How should linguistic structure and meaning be represented? What algorithms can recover them from text? And crucially, how can we build statistical models to choose among the many legal answers? The course covers methods for trees (parsing and semantic interpretation), sequences (finite-state transduction such as morphology), and words (sense and phrase induction), with applications to practical engineering tasks such as information retrieval and extraction, text classification, part-of-speech tagging, speech recognition and machine translation. There are a number of structured but challenging programming assignments. [Applications]
Students may receive credit for only one of EN.600.465, EN.601.465, EN.601.665., EN.600.226/EN.601.226

EN.601.466. Information Retrieval and Web Agents. 3 Credits.
An in-depth, hands-on study of current information retrieval techniques and their application to developing intelligent WWW agents. Topics include a comprehensive study of current document retrieval models, mail/news routing and filtering, document clustering, automatic indexing, query expansion, relevance feedback, user modeling, information visualization and usage pattern analysis. In addition, the course explores the range of additional language processing steps useful for template filling and information extraction from retrieved documents, focusing on recent, primarily statistical methods. The course concludes with a study of current issues in information retrieval and data mining on the World Wide Web. Topics include web robots, spiders, agents and search engines, exploring both their practical implementation and the economic and legal issues surrounding their use. Recommended Course Background: EN.601.226
EN.600.226 OR EN.601.226

EN.601.467. Introduction to Human Language Technology. 3 Credits.
This course gives an overview of basic foundations and applications of human language technology, such as: morphological, syntactic, semantic, and pragmatic processing; machine learning; signal processing; speech recognition; speech synthesis; information retrieval; text classification; topic modelling; information extraction; knowledge representation; machine translation; dialog systems; etc. [Applications] Pre-req: EN.601.226 Data Structures; knowledge of Python recommended. EN.601.226 OR EN.600.226

EN.601.468. Machine Translation. 3 Credits.
Google translate can instantly translate between any pair of over fifty human languages (for instance, from French to English). How does it do that? Why does it make the errors that it does? And how can you build something better? Modern translation systems learn to translate by reading millions of words of already translated text, and this course will show you how they work. The course covers a diverse set of fundamental building blocks from linguistics, machine learning, algorithms, data structures, and formal language theory, along with their application to a real and difficult problem in artificial intelligence. Students may receive credit for only one of EN.600.468, EN.601.468, EN.601.668., EN.600.226/EN.601.226 and prob/stat.

EN.601.470. Artificial Agents. 3 Credits.
This course covers a number of topics explored in introductory AI, such as knowledge representation, reasoning, and natural language understanding. Unlike introductory AI, we will pursue these topics based on the transformer neural architecture. We will motivate the material through interacting with agents in games: how to build models that understand user commands, how to generate responses back to a user, and how to reason about a synthetic environment to determine a course of action. Assignments will include programming, presentations on readings, and written summaries of readings. [Applications] (EN.601.475 OR EN.601.675) OR (EN.601.482 OR EN.601.682) OR (EN.601.488 OR EN.601.688) OR (EN.601.486 OR EN.601.686)

EN.601.474. ML: Learning Theory. 3 Credits.
This is an undergraduate level course in machine learning. It will provide a formal and in-depth coverage of topics in statistical and computational learning theory. We will revisit popular machine learning algorithms and understand their performance in terms of the size of the data (sample complexity), memory needed (space complexity), as well as the overall runtime (computational or iteration complexity). We will cover topics including PAC learning, uniform convergence, VC dimension, Rademacher complexity, algorithmic stability, kernel methods, online learning and reinforcement learning, as well as introduce students to current topics in large-scale machine learning and randomized projections. General focus will be on combining methodology with theoretical and computational foundations. [Analysis] AS.110.202 AND ((EN.553.420 AND EN.553.430) OR (EN.553.211 OR EN.553.310 OR EN.553.311) OR EN.560.348) AND (AS.110.201 OR AS.110.212 OR EN.553.291) AND (EN.500.112 OR EN.500.113 OR EN.500.114) OR (EN.601.220 OR AS.250.205 OR EN.580.200 OR EN.601.107)

EN.601.475. Machine Learning. 3 Credits.
Machine learning is a subfield of computer science and artificial intelligence, whose goal is to develop computational systems, methods, and algorithms that can learn from data to improve their performance. This course introduces the foundational concepts of modern Machine Learning, including core principles, popular algorithms and modeling platforms. This will include both supervised learning, which includes popular algorithms like SVMs, logistic regression, boosting and deep learning, as well as unsupervised learning frameworks, which include Expectation Maximization and graphical models. Homework assignments include a heavy programming component, requiring students to implement several machine learning algorithms in a common learning framework. Additionally, analytical homework questions will explore various machine learning concepts, building on the pre-requisites that include probability, linear algebra, multi-variate calculus and basic optimization. Students in the course will develop a learning system for a final project. [Analysis or Applications] Students may receive credit for only one of EN.600.475, EN.601.475, EN.601.675., Linear Algebra, Probability, Statistics, Calc III, and Intro Computing/Programming - AS.110.202 AND (EN.553.211 OR EN.553.310 OR EN.553.311 OR ((EN.553.420 OR EN.553.431) AND (EN.560.348) AND (AS.110.201 OR AS.110.212 OR EN.553.291)) AND (EN.500.112 OR EN.500.113 OR EN.500.114 OR (EN.601.220 OR EN.600.120) OR AS.250.205 OR EN.580.200 OR (EN.601.107 OR EN.601.107)).
EN.601.476. **Machine Learning: Data to Models. 3 Credits.**
How can robots localize themselves in an environment when navigating? Which factors predict whether patients are at greatest-risk for complications in the hospital? Can we reconstruct the brain's "connectome" from fMRI data? Many such big data questions can be answered using the paradigm of probabilistic models in machine learning. This is the second course on machine learning which focuses on probabilistic graphical models. You will learn about directed and undirected graphical models, inference methods, sampling, structure learning algorithms, latent variables, and temporal models. There will be regular assignments, which include theory and some programming. Students will analyze real data for their final project, applying methods discussed in class and writing up a report of their results. [Analysis or Applications] Students may receive credit for EN.600.476 or EN.600.676, but not both. Students may receive credit for only one of EN.600.476, EN.601.476, EN.601.676, EN.601.475/EN.600.475 OR EN.600.675/EN.601.675 or equivalent.

EN.601.477. **Causal Inference. 3 Credits.**
"Big data" is not necessarily "high quality data." Systematically missing records, unobserved confounders, and selection effects present in many datasets make it harder than ever to answer scientifically meaningful questions. This course will teach mathematical tools to help you reason about causes, effects, and bias sources in data with confidence. We will use graphical causal models, and potential outcomes to formalize what causal effects mean, describe how to express these effects as functions of observed data, and use regression model techniques to estimate them. We will consider techniques for handling missing values, structure learning algorithms for inferring causal directionality from data, and connections between causal inference and reinforcement learning. [Analysis] Pre-requisites: familiarity with the R programming language, multivariate calculus, basics of linear algebra and probability. EN.601.475 OR (EN.553.211 OR EN.553.311 OR EN.553.420 OR EN.553.421) AND AS.110.202 or permission of instructor.; Students may receive credit for only one of EN.600.477, EN.600.677, EN.601.477, EN.601.677.

EN.601.481. **Machine Learning: Optimization. 3 Credits.**
Optimization is at the heart of machine learning. Most machine learning problems can be posed as optimization problems. However, unlike mathematical optimization where the focus is on efficient algorithms for finding solutions with a high degree of accuracy as measured by optimality conditions, optimization for machine learning focuses on algorithms that are efficient and generalize well. In this course, we will focus on optimization for problems that arise in machine learning, design and analysis of algorithms for solving these problems, and the interplay of optimization and machine learning. The coursework will include homework assignments and a final project focusing on applying optimization algorithms to real world machine learning problems. [Analysis or Applications] EN.601.475 OR (EN.553.211 OR EN.553.310 OR EN.553.311 OR (EN.553.420 OR EN.553.421) AND (EN.553.430 OR EN.553.431)) AND AS.110.201 AND AS.110.202; Students may receive credit for only one of EN.601.481/681.

EN.601.482. **Machine Learning: Deep Learning. 4 Credits.**
Deep learning (DL) has emerged as a powerful tool for solving data-intensive learning problems such as supervised learning for classification or regression, dimensionality reduction, and control. As such, it has a broad range of applications including speech and text understanding, computer vision, medical imaging, and perception-based robotics. The goal of this course is to introduce the basic concepts of deep learning (DL). The course will include a brief introduction to the basic theoretical and methodological underpinnings of machine learning, commonly used architectures for DL, DL optimization methods, DL programming systems, and specialized applications to computer vision, speech understanding, and robotics. Students will be expected to solve several DL problems on standardized data sets, and will be given the opportunity to pursue team projects on topics of their choice. [Applications] EN.601.226 AND (AS.110.201 OR AS.110.212 OR EN.553.291) AND (EN.553.310 OR EN.553.311 OR EN.553.420 OR EN.553.420); Python recommended.

EN.601.484. **ML: Interpretable Machine Learning Design. 3 Credits.**
There are considerable research thrusts that seek to increase the trustworthiness and perceived reliability of machine learning solutions. One such thrust, interpretable machine learning, attempts to reveal the working mechanisms of a machine learning system. However, other than on-task performance, interpretability is not a property of machine learning algorithms, but an affordance: a relationship between interpretable model and the target users in their context. Successful development of machine learning solutions that afford interpretation thus requires understanding of techniques beyond pure machine learning. In this course, we will first review the basics of machine learning and human-centered design. Then, during student team-delivered lectures, we will learn about contemporary techniques to introduce interpretability to machine learning models and discuss recent literature on the topic. In addition to hands-on homework assignments, students will work in groups to design, justify, implement, and test an interpretable machine learning algorithm for a problem of their choosing. Recommended background in (601.454/654, 601.290, 601.490/690 or 601.491/691) and 601.477/677, and coding in Python/PyTorch. (EN.601.476 OR EN.601.476) OR (EN.601.464 OR EN.601.664) OR (EN.601.482 OR EN.601.682)

EN.601.486. **Machine Learning: Artificial Intelligence System Design & Development. 3 Credits.**
The field of artificial intelligence (AI) has recently seen a substantial increase in popularity, largely fueled by the successes of training deep neural networks that achieve state-of-the-art performance in a large variety of problems. These successes are not limited to academic benchmarks but have started to impact our everyday lives in the form of products such as Google Lens, Amazon Alexa, and Tesla Autopilot. In order for such AI systems to succeed we must consider its impact on everyday life, its overall capabilities and performance, and the effectiveness of the human-AI interaction. The importance of harmonic interplay between all these components is dramatically highlighted by recent catastrophic events in road transport and aviation. In this project-based course you will work in teams of 3-5 students to 1) Identify a need with high-impact implications on everyday life; 2) Conceptualize and design an AI system targeting this need, and 3) Develop the AI system by refining a demo-able prototype based on feedback received during course presentations. Required course background: (EN.601.475/675 or EN.601.464/664 or EN.601.482/682) and Python programming. Recommended: 601.290 or 601.454/654 or 601.490/690 or 601.491/691 (experience with human computer interface design). (EN.601.475 OR EN.601.675) OR (EN.601.464 OR EN.601.664) OR (EN.601.482 OR EN.601.682)
EN.601.490. Introduction to Human-Computer Interaction. 3 Credits. This course is designed to introduce undergraduate and graduate students to design techniques and practices in human-computer interaction (HCI), the study of interactions between humans and computing systems. Students will learn design techniques and evaluation methods, as well as current practices and exploratory approaches, in HCI through lectures, readings, and assignments. Students will practice various design techniques and evaluation methods through hands-on projects focusing on different computing technologies and application domains. This course is intended for undergraduate and graduate students in Computer Science/Cognitive Science/Psychology. Interested students from different disciplines should contact the instructor before enrolling in this course. [Applications] Recommended Background: Basic programming skills. Students can receive credit for either EN.601.490 or EN.601.690, but not both.

EN.601.491. Human-Robot Interaction. 3 Credits. This course is designed to introduce advanced students to research methods and topics in human-robot interaction (HRI), an emerging research area focusing on the design and evaluation of interactions between humans and robotic technologies. Students will (1) learn design principles for building and research methods of evaluating interactive robot systems through lectures, readings, and assignments, (2) read and discuss relevant literature to gain sufficient knowledge of various research topics in HRI, and (3) work on a substantial project that integrates the principles, methods, and knowledge learned in this course. [Applications] Recommended Background: Basic programming skills.

EN.601.495. Computer Science Workshop. 1 - 3 Credits. An applications-oriented, computer science project done under the supervision and with the sponsorship of a faculty member in the Department of Computer Science. Computer Science Workshop provides a student with an opportunity to apply theory and concepts of computer science to a significant project of mutual interest to the student and a Computer Science faculty member. Permission to enroll in CSW is granted by the faculty sponsor after his/her approval of a project proposal from the student. Interested students are advised to consult with Computer Science faculty members before preparing a Computer Science Workshop project proposal.

You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.601.503. Independent Study. 1 - 3 Credits. Individual guided study for undergraduate students under the direction of a faculty member in the department. The program of study, including the credit to be assigned, must be worked out in advance between the student and the faculty member involved. Permission required. You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.601.507. Undergraduate Research. 1 - 3 Credits. Individual research for undergraduates under the direction of a faculty member in the department. The program of research, including the credit to be assigned, must be worked out in advance between the student and the faculty member involved. Permission required. You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.601.509. Computer Science Internship. 1 Credit. Individual work in the field with a learning component, supervised by a faculty member in the department. The program of study and credit assigned must be worked out in advance between the student and the faculty member involved. Students may not receive credit for work that they are paid to do. As a rule of thumb, 40 hours of work is equivalent to one credit. Permission required. You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.601.517. Group Undergraduate Research. 1 - 3 Credits. Independent research for undergraduates under the direction of a faculty member in the department. This course has a weekly research group meeting that students are expected to attend. The program of research, including the credit to be assigned, must be worked out in advance between the student and the faculty member involved. You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.601.519. Senior Honors Thesis. 3 Credits. The student will undertake a substantial independent research project under the supervision of a faculty member, potentially leading to the notation "Departmental Honors with Thesis" on the final transcript. Students are expected to enroll in both semesters of this course during their senior year. Project proposals must be submitted and accepted in the preceding spring semester (junior year) before registration. Students will present their work publicly before April 1st of senior year. They will also submit a first draft of their project report (thesis document) at that time. Faculty will meet to decide if the thesis will be accepted for honors. Computer science majors only. Students should have a 3.5 GPA in computer science courses at the end of their junior year and permission of faculty sponsor. You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.601.520. Senior Honors Thesis. 1 - 3 Credits. For computer science majors only, a continuation of EN.601.519. Recommended Course Background: EN.601.519 You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
EN.601.556. **Senior Thesis In CIS. 3 Credits.**
EN.600.445 or permission of instructor; You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.

EN.601.611. **Computer Science Innovation & Entrepreneurship II. 3 Credits.**
This course is the second half of a two-course sequence and is a continuation of course EN.660.410.01, CS Innovation and Entrepreneurship, offered by the Center for Leadership Education (CLE). In this sequel course the student groups, directed by CS faculty, will implement the business idea which was developed in the first course and will present the implementations and business plans to an outside panel made up of practitioners, industry representatives, and venture capitalists. [General]
EN.660.410

EN.601.614. **Computer Networks. 3 Credits.**
Topics covered will include applications layer protocols (e.g. HTTP, FTP, SMTP), transport layer protocols (UDP, TCP), network layer protocols (e.g. IP, ICMP), link layer protocols (e.g. Ethernet) and wireless protocols (e.g. IEEE 802.11). The course will also cover routing protocols such as link state and distance vector, multicast routing, and path vector protocols (e.g. BGP). The class will examine security issues such as firewalls and denial of service attacks. We will also study DNS, Web caching and CDN, peer to peer, and protocol tunneling. Finally, we will explore security protocols (e.g. TLS, SSH, IPsec), as well as some basic cryptography necessary to understand these. Grading will be based on hands-on programming assignments, homework and two exams. [Systems] Required course background: C/C++ programming and data structures, or permission.
Students can only receive credit for EN.601.414 or EN.601.614, but not both.

EN.601.615. **Databases. 3 Credits.**
Same material as 601.415, for graduate students. Introduction to database management systems and database design, focusing on the relational and object-oriented data models, query languages and query optimization, transaction processing, parallel and distributed databases, recovery and security issues, commercial systems and case studies, heterogeneous and multimedia databases, and data mining. [Systems] Required course background: C/C++ programming and data structures, or permission. Students may receive credit for only one of EN.600.315, EN.600.415, EN.601.315, EN.601.415, EN.601.615.

EN.601.617. **Distributed Systems. 3 Credits.**
Graduate version of 601.317 Systems. Students may receive credit for 601.317 or 601.417 but not both. Recommended Course Background: EN.601.220, EN.601.226
Students may receive credit for only one of 417/617

EN.601.618. **Operating Systems. 3 Credits.**
Same material as 601.418, for graduate students. This course covers fundamental topics related to operating systems theory and practice. Topics include processor management, storage management, concurrency control, multi-programming and processing, device drivers, operating system components (e.g., file system, kernel), modeling and performance measurement, protection and security, and recent innovations in operating system structure. Course work includes the implementation of operating systems techniques and routines, and critical parts of a small but functional operating system. [Systems] Required course background: Data Structures & Computer System Fundamentals
Students may receive credit for only one of EN.600.318, EN.600.418, EN.601.318, EN.601.418, EN.601.618.

EN.601.619. **Cloud Computing. 3 Credits.**
Clouds host a wide range of the applications that we rely on today. In this course, we study common cloud applications, traffic patterns that they generate, critical networking infrastructures that support them, and core networking and distributed systems concepts, algorithms, and technologies used inside clouds. We will also study how today's application demand is influencing the network's design, explore current practice, and how we can build future's networked infrastructure to better enable both efficient transfer of big data and low-latency requirements of real-time applications. The format of this course will be a mix of lectures, discussions, assignments, and a project designed to help students practice and apply the theories and techniques covered in the course. [Systems] Prerequisites: EN.601.226 or permission. Students can only receive credit for one of 601.419/619. Recommended: a course in operating systems, networks or systems programming.
Students may earn credit for EN.601.419 or EN.601.619, but not both.

EN.601.620. **Parallel Computing for Data Science. 3 Credits.**
This course studies parallelism in data science, drawing examples from data analytics, statistical programming, and machine learning. It focuses mostly on the Python programming ecosystem but will use C/C++ to accelerate Python and Java to explore shared-memory threading. It explores parallelism at all levels, including instruction level parallelism (pipelining and vectorization), shared-memory multicore, and distributed computing. Concepts from computer architecture and operating systems will be developed in support of parallelism, including Moore's law, the memory hierarchy, caching, processes/threads, and concurrency control. The course will cover modern data-parallel programming frameworks, including Dask, Spark, Hadoop, and Ray. The course will not cover GPU deep-learning frameworks nor CUDA. The course is suitable for second-year undergraduate CS majors and graduate students from other science and engineering disciplines that have prior programming experience. Required course background: Data Structures, Computer System Fundamentals, and familiarity with Python. [Systems] Students may receive credit for only one of EN.600.320, EN.601.420, OR EN.601.620.
EN.601.621. Object Oriented Software Engineering. 3 Credits.
Same material as EN.601.421, for graduate students. This course covers object-oriented software construction methodologies and their application. The main component of the course is a large team project on a topic of your choosing. Course topics covered include object-oriented analysis and design, UML, design patterns, refactoring, program testing, code repositories, team programming, and code reviews. [Systems or Applications] Required course background: intermediate programming, data structures, and experience in mobile or web app development. Students may receive credit for only one of 601.421/621.

EN.601.622. Software Testing & Debugging. 3 Credits.
Studies show that testing can account for over 50% of software development costs. This course presents a comprehensive study of software testing, principles, methodologies, tools, and techniques. Topics include testing principles, coverage (graph coverage, logic coverage, input space partitioning, and syntax-based coverage), unit testing, higher-order testing (integration, system-level, acceptance), testing approaches (white-box, black-box, grey-box), regression testing, debugging, delta debugging, and several specific types of functional and non-functional testing as schedule/interest permits (GUI testing, usability testing, security testing, load/performance testing, A/B testing etc.). For practical topics, state-of-the-art tools/techniques will be studied and utilized. [Systems] EN.601.290 OR EN.601.421 OR EN.601.621; Students can only take EN.601.422 or EN.601.622, but not both.

EN.601.624. Reliable Software Systems. 3 Credits.
Reliability is an essential quality requirement for all artifacts operating in the real-world, ranging from bridges, cars to power grids. Software systems are no exception. In this computing age when software is transforming even traditional mission-critical artifacts, making sure the software we write is reliable becomes ever more important. This course exposes students to the principles and techniques in building reliable systems. We will study a set of systematic approaches to make software more robust. These include but are not limited to static analysis, testing framework, model checking, symbolic execution, fuzzing, and formal verification. In addition, we will cover the latest research in system reliability. Recommended course background: EN.601.220 AND EN.601.628.

EN.601.626. Principles of Programming Languages. 3 Credits.
Same material as EN.601.426, for graduate students. Functional, object-oriented, and other language features are studied independent of a particular programming language. Students become familiar with these features by implementing them. Most of the implementations are in the form of small language interpreters. Some type checkers and a small compiler will also be written. The total amount of code written will not be overly large, as the emphasis is on concepts. The ML programming language is the implementation language used. [Analysis] Required course background: EN.601.226.

EN.601.627. Principles of Programming Languages II. 3 Credits.
This course is designed as a follow-on to Principles of Programming Languages. It will cover a wide array of fundamental topics in programming languages, including advanced functional programming, the theory of inductive definitions, advanced operational semantics, advanced type systems, program analysis, program verification, theorem provers and SAT solvers. [Analysis] EN.601.426 OR EN.601.626

EN.601.628. Compilers & Interpreters. 3 Credits.
Introduction to compiler design, including lexical analysis, parsing, syntax-directed translation, symbol tables, runtime environments, and code generation and optimization. Students are required to write a compiler as a course project. [Systems] Required course background: intermediate programming, data structures and computer system fundamentals. Recommended background: automata and computation theory. Students may receive credit for only one of EN.601.428 or 601.628.

EN.601.629. Functional Programming in Software Engineering. 3 Credits.
How can we effectively use functional programming techniques to build real-world software? This course will primarily focus on using the OCaml programming language for this purpose. Topics covered include OCaml basics, modules, standard libraries, testing, quickcheck, build tools, functional data structures and efficiency analysis, monads, streams, and promises. Students will practice what they learn in lecture via functional programming assignments and a final project. Required course background in data structures (601.226).

EN.601.630. Combinatorics & Graph Theory in Computer Science. 3 Credits.
This is a graduate-level course studying the applications of combinatorics and graph theory in computer science. We will start with some basic combinatorial techniques such as counting and pigeon hole principle, and then move to advanced techniques such as the probabilistic method, spectral graph theory and additive combinatorics. We shall see their applications in various areas in computer science, such as proving lower bounds in computational models, randomized algorithms, coding theory and pseudorandomness. [Analysis] Recommended Course Background: probability theory and linear algebra.

EN.601.631. Theory of Computation. 3 Credits.
This is a graduate-level course studying the theoretical foundations of computer science. Topics covered will be models of computation from automata to Turing machines, computability, complexity theory, randomized algorithms, inapproximability, interactive proof systems and probabilistically checkable proofs. Students may not take both EN.601.231 and EN.601.631, unless one is for an undergrad degree and the other for grad. [Analysis] Recommended Course Background: EN.553.171 or instructor permission.

EN.601.633. Intro Algorithms. 3 Credits.
Same material as EN.601.433, for graduate students. This course concentrates on the design of algorithms and the rigorous analysis of their efficiency. Topics include the basic definitions of algorithmic complexity (worst case, average case); basic tools such as dynamic programming, sorting, searching, and selection; advanced data structures and their applications (such as union-find); graph algorithms and searching techniques such as minimum spanning trees, depth-first search, shortest paths, design of online algorithms and competitive analysis. [Analysis] Required background: Data Structures and Discrete Math or Automata/Computation Theory.

EN.601.634. Evolution of Software. 3 Credits.
This course explores the evolution of software technology and its impact on society. We will examine the historical development of software engineering, from the early days of mainframes to the current era of cloud computing. [Analysis] Required background: EN.601.426 or 626.

EN.601.635. Advanced Compiler Design. 3 Credits.
This course covers advanced topics in compiler design, such as optimization, code generation, and machine code. Students are required to design a compiler for a target machine. [Systems] Required course background: EN.601.428 or 628.

EN.601.636. Theory of Computation II. 3 Credits.
This course continues the study of theoretical foundations of computer science. Topics covered include advanced topics in automata theory, computability theory, complexity theory, probabilistic computation, and quantum computing. [Analysis] Required background: EN.601.631.

EN.601.637. Data Structures and Algorithms. 3 Credits.
This course covers advanced data structures and algorithms, including advanced topics such as hash tables, external memory, and external sorting. Students are required to implement a data structure in OCaml. [Analysis] Required background: EN.601.626.

EN.601.638. Advanced Topics in Software Engineering. 3 Credits.
This course covers advanced topics in software engineering, such as software architecture, agile methodologies, and software quality engineering. Students are required to complete a research project in the field. [Analysis] Required background: EN.601.629.

EN.601.639. Complex Systems. 3 Credits.
This course explores the study of complex systems, such as biological, social, and economic systems. Students are required to complete a research project in the field. [Analysis] Required background: EN.601.637.
EN.601.634. Randomized and Big Data Algorithms. 3 Credits.
Same material as 601.434, for graduate students. The course emphasizes algorithmic design aspects, and how randomization can be a helpful tool. The topics covered include: tail inequalities, linear programming relaxation & randomized rounding, de-randomization, existence proofs, universal hashing, markov chains, metropolis and metropolis-hastings methods, mixing by coupling and by eigenvalues, counting problems, semi-definite programming and rounding, lower bound arguments, and applications of expanders. [Analysis] (www.cs.jhu.edu/~cs464) Required course background: EN.600.363 or EN.601.433 or EN.601.633.
Students may receive credit for only one of EN.600.464, EN.600.664, EN.601.434, EN.601.634.

EN.601.635. Approximation Algorithms. 3 Credits.
Graduate version of EN.601.435. Recommended Background: EN.601.633 or equivalent. Students may receive credit for EN.601.435 or EN.601.635, but not both.

EN.601.636. Algorithmic Game Theory. 3 Credits.
Same material as EN.601.436, for graduate students. This course provides an introduction to algorithmic game theory: the study of games from the perspective of algorithms and theoretical computer science. There will be a particular focus on games that arise naturally from economic interactions involving computer systems (such as economic interactions between large-scale networks, online advertising markets, etc.), but there will also be broad coverage of games and mechanisms of all sorts. Topics covered will include a) complexity of computing equilibria and algorithms for doing so, b) (in)efficiency of equilibria, and c) algorithmic mechanism design. [Analysis] Required course background: EN.601.633.
Students may receive credit for EN.601.436 or EN.601.636, but not both.

EN.601.637. Federated Learning and Analytics. 3 Credits.
Federated Learning (FL) is an area of machine learning where data is distributed across multiple devices and training is performed without exchanging the data between devices. FL can be contrasted with classical machine learning settings when data is available in a central location. As such, FL faces additional challenges and limitations such as privacy and communication. For example, FL may deal with questions of learning from sensitive data on mobile devices while protecting privacy of individual users and dealing with low power and limited communication. As a result, FL requires knowledge of many interdisciplinary areas such as differential privacy, distributed optimization, sketching algorithms, compression and more. In this course students will learn basic concepts and algorithms for FL and federated analytics, and gain hands-on experience with new methods and techniques. Students will gain understanding in reasoning about possible trade-offs between privacy, accuracy and communication. [Analysis] Required: 433/633 (Algo), 475/675 (ML) or 482/682 (ML: DL), linear algebra, probability. Students may receive credit for only one of 601.437 or 601.637

EN.601.640. Web Security. 3 Credits.
This course begins with reviewing basic knowledge of the World Wide Web, and then exploring the central defense concepts behind Web security, such as same-origin policy, cross-origin resource sharing, and browser sandboxing. It will cover the most popular Web vulnerabilities, such as cross-site scripting (XSS) and SQL injection, as well as how to attack and penetrate software with such vulnerabilities. Students will learn how to detect, respond, and recover from security incidents. Newly proposed research techniques will also be discussed. [Systems] Required background: data structures and computer system fundamentals. Students may receive credit for only one of 601.640/440/640

EN.601.641. Blockchains and Cryptocurrencies. 3 Credits.
Same as EN.601.441, for graduate students. This course will introduce students to cryptocurrencies and the main underlying technology of Blockchain. The course will start with the relevant background in cryptography and then proceed to cover the recent advances in the design and applications of blockchains. This course should primarily appeal to students who want to conduct research in this area or wish to build new applications on top of blockchains. It should also appeal to those who have a casual interest in this topic or are generally interested in cryptography. Students are expected to have mathematical maturity. Recommended Course Background: EN.601.226 AND (EN.553.310 OR EN.553.420) [Analysis] Students may receive credit for only one of EN.600.451 OR EN.601.441 OR EN.601.641

EN.601.642. Modern Cryptography. 3 Credits.
Same material as 601.442, for graduate students. Modern Cryptography includes seemingly paradoxical notions such as communicating privately without a shared secret, proving things without leaking knowledge, and computing on encrypted data. In this challenging but rewarding course we will start from the basics of private and public key cryptography and go all the way up to advanced notions such as zero-knowledge proofs, functional encryption and program obfuscation. The class will focus on rigorous proofs and require mathematical maturity. [Analysis] Required course background: Probability & Automata/Computation Theory Students may receive credit for only one of EN.601.442 OR EN.601.642.

EN.601.643. Security & Privacy in Computing. 3 Credits.
Same material as 601.443, for graduate students. Lecture topics will include computer security, network security, basic cryptography, system design methodology, and privacy. There will be a heavy work load, including written homework, programming assignments, exams and a comprehensive final. The class will also include a semester-long project that will be done in teams and will include a presentation by each group to the class. [Applications] Required Course Background: A basic course in operating systems and networking, or permission of instructor. Students may receive credit for only one of EN.600.443, EN.601.443, EN.601.643.

EN.601.644. Network Security. 3 Credits.
Same material as 601.444, for graduate students. This course focuses on communication security in computer systems and networks. The course is intended to provide students with an introduction to the field of network security. The course covers network security services such as authentication and access control, integrity and confidentiality of data, firewalls and related technologies, Web security and privacy. Course work involves implementing various security techniques. A course project is required. [Systems] Recommended. Course Background: EN.601.220, EN.601.226 or equivalent. Students may receive credit for only one of EN.600.443, EN.600.454, EN.601.443, EN.601.644, EN.601.645.

EN.601.645. Practical Cryptographic Systems. 3 Credits.
Same material as 601.445, for graduate students. This semester-long course will teach systems and cryptographic design principles by example: by studying and identifying flaws in widely-deployed cryptographic products and protocols. Our focus will be on the techniques used in practical security systems, the mistakes that lead to failure, and the approaches that might have avoided the problem. We will place a particular emphasis on the techniques of provable security and the feasibility of reverse-engineering undocumented cryptographic systems. [Systems] Students may receive credit for EN.600.454/EN.601.445 or EN.601.645, but not both.
EN.601.646. Sketching and Indexing for Sequences. 3 Credits.
Many of the world’s largest and fastest-growing datasets are text, e.g. DNA sequencing data, web pages, logs and social media posts. Such datasets are useful only to the degree we can query, compare and analyze them. Here we discuss two powerful approaches in this area. We will cover sketching, which enables us to summarize very large texts in small structures that allow us to measure the sizes of sets and of their unions and intersections. This in turn allows us to measure similarity and find near neighbors. Second, we will discuss indexing — succinct and compressed indexes in particular — which enables us to efficiently search inside very long strings, especially in highly repetitive texts. [Analysis] Students may receive credit for EN.601.446 or EN.601.646, but not both.

EN.601.647. Computational Genomics: Sequences. 3 Credits.
Same material as 601.447, for graduate students. Your genome is the blueprint for the molecules in your body. It’s also a string of letters (A, C, G and T) about 3 billion letters long. How does this string give rise to you? Your heart, your brain, your health? This, broadly speaking, is what genomics research is about. This course will familiarize you with a breadth of topics from the field of computational genomics. The emphasis is on current research problems, real-world genomics data, and efficient software implementations for analyzing data. Topics will include: string matching, sequence alignment and indexing, assembly, and sequence models. Course will involve significant programming projects. [Applications]Required course background: Intermediate programming (C/C++) and Data Structures. Students may receive credit for only one EN.601.447/647/747.

EN.601.648. Computational Genomics: Data Analysis. 3 Credits.
Same material as EN.601.448, for graduate students. Genomic data has the potential to reveal causes of disease, novel drug targets, and relationships among genes and pathways in our cells. However, identifying meaningful patterns from high-dimensional genomic data has required development of new computational tools. This course will cover current approaches in computational analysis of genomic data with a focus on statistical methods and machine learning. Topics will include disease association, prediction tasks, clustering and dimensionality reduction, data integration, and network reconstruction. There will be some programming and a project component. [Applications]Recommended Course Background: EN.600.226 or other programming experience, probability and statistics, linear algebra or calculus.

EN.601.649. Computational Genomics: Applied Comparative Genomics. 3 Credits.
The goal of this course is to study the leading computational and quantitative approaches for comparing and analyzing genomics starting from raw sequencing data. The course will focus on human genomics and human medical applications, but the techniques will be broadly applicable across the tree of life. The topics will include genome assembly & comparative genomics, variant identification & analysis, gene expression & regulation, personal genome analysis, and cancer genomics. The grading will be based on assignments, a midterm exam, class presentations, and a significant class project. Prerequisites: knowledge of the Unix operating system and programming expertise in a language such as R or Python. [Applications]

EN.601.654. Augmented Reality. 3 Credits.
This course introduces students to the field of Augmented Reality. It reviews its basic definitions, principles and applications. It then focuses on Medical Augmented Reality and its particular requirements. The course also discusses the main issues of calibration, tracking, multimodal registration, advance visualization and display technologies. Homework in this course will relate to the mathematical methods used for calibration, tracking and visualization in medical augmented reality. Students may also be asked to read papers and implement various techniques within group projects. Recommended Course Background: EN.601.220, EN.601.226, and AS.110.201. [Applications] Students may receive credit for only one of EN.600.484, EN.600.684, EN.601.454, EN.601.654.

EN.601.655. Computer Integrated Surgery I. 4 Credits.
Same material as EN.601.455, for graduate students. This course focuses on computer-based techniques, systems, and applications exploiting quantitative information from medical images and sensors to assist clinicians in all phases of treatment from diagnosis to preoperative planning, execution, and follow-up. It emphasizes the relationship between problem definition, computer-based technology, and clinical application and includes a number of guest lectures given by surgeons and other experts on requirements and opportunities in particular clinical areas. [Applications] Required Course Background: data structures and linear algebra or permission. Recommended Course Background: intermediate programming in C/C++, EN.601.457, EN.601.461, image processing. Students may receive credit for only one of EN.601.455 or EN.601.655.

EN.601.656. Computer Integrated Surgery II. 3 Credits.
Same material as EN.601.456, for graduate students. This weekly lecture/seminar course addresses similar material to EN.601.655, but covers selected topics in greater depth. In addition to material covered in lectures/seminars by the instructor and other faculty, students are expected to read and provide critical analysis/presentations of selected papers in recitation sessions. Students taking this course are required to undertake and report on a significant term project under the supervision of the instructor and clinical end users. Typically, this project is an extension of the term project from EN.601.655, although it does not have to be. Grades are based both on the project and on classroom recitations. Students wishing to attend the weekly lectures as a 1-credit seminar should sign up for EN.601.356. [Applications] EN.600.445/EN.601.455 OR EN.600.645/EN.601.655 OR permission of the instructor. Students may receive credit for only one of EN.600.446, EN.600.646, EN.601.456, EN.601.656.

EN.601.657. Computer Graphics. 3 Credits.
Same material as EN.601.457, for graduate students. This course introduces computer graphics techniques and applications, including image processing, rendering, modeling and animation. [Applications]Permission of instructor is required for students not satisfying a pre-requisite. No Audits. Required course background: EN.601.220 (C++), EN.601.226, linear algebra. Students may receive credit for only one of EN.601.457 OR EN.601.657.

EN.601.659. Computational Geometry. 3 Credits.
This course will provide an introduction to computational geometry. It will cover a number of topics in two- and three-dimensions, including polygon triangulations and partitions, convex hulls, Delaunay and Voronoi diagrams, arrangements, and spatial queries. Time-permitting, we will also look at kd-trees, general BSP-trees, and quadtrees. [Analysis] Recommended Course Background: EN.601.220 AND EN.601.226 AND (EN.600.363 OR EN.601.433). Students may earn credit for EN.601.459 or EN.601.659, but not both.
EN.601.661. Computer Vision. 3 Credits.
This course provides an overview of fundamental methods in computer vision from a computational perspective. Methods studied include: camera systems and their modeling, computation of 3-D geometry from binocular stereo, motion, and photometric stereo, and object recognition, image segmentation, and activity analysis. Elements of machine learning and deep learning are also included. [Applications] Required course background: Intro to Programming, Linear Algebra & prob/stats

Students may receive credit for only one of EN.601.461, EN.601.661, OR EN.601.761.

EN.601.662. Introduction to Spatial Computing. 3 Credits.
This course will provide students with a rich understanding of immersive technology and spatial computing as the next wave of computing after personal and mobile computing, and belongs to the devices that can sense the space or are “spatially” aware. It also covers input systems and interaction modalities that have evolved to support human-computer interaction required for immersive environments. It will go through principles of design thinking as a mindset for creating immersive experiences, and students will explore the practical implication of this subject in healthcare, industry, and society through the projects. Required course background in intermediate programming, data structures, and linear algebra. Computer vision is recommended. [Applications]

EN.601.663. Algorithms for Sensor-Based Robotics. 3 Credits.
Same material as EN.601.463, for graduate students. This course surveys the development of robotic systems for navigating in an environment from an algorithmic perspective. It will cover basic kinematics, configuration space concepts, motion planning, and localization and mapping. It will describe these concepts in the context of the ROS software system, and will present examples relevant to mobile platforms, manipulation, robotics surgery, and human-machine systems. [Analysis] Required course background in intermediate programming, data structures, and linear algebra. Computer vision is recommended. [Applications]

EN.601.664. Artificial Intelligence. 3 Credits.
Same material as EN.601.464, for graduate students. This course is recommended for students, scientists, and engineers with a genuine curiosity about the fundamental obstacles in getting machines to perform tasks such as deduction, learning, planning and navigation. It covers methods for automated reasoning, automatic problem solvers and planners, knowledge representation mechanisms, game playing, machine learning, and statistical pattern recognition. Strong programming skills are expected, as well as basic familiarity with probability. Students intending to also take courses in machine learning (e.g. 601.475/675, 601.476/676, 601.482/682) may find it beneficial to take this course first, or concurrently. [Prereq: Data Structures; Recommended: linear algebra, prob/stat]

Students may receive credit for only one of EN.601.464 OR EN.601.664.

EN.601.665. Natural Language Processing. 3 Credits.
Same material as 601.465, for graduate students. This course is an in-depth overview of techniques for processing human language. How should linguistic structure and meaning be represented? What algorithms can recover them from text? And crucially, how can we build statistical models to choose among the many legal answers? The course covers methods for trees (parsing and semantic interpretation), sequences (finite-state transduction such as morphology), and words (sense and phrase induction), with applications to practical engineering tasks such as information retrieval and extraction, text classification, part-of-speech tagging, speech recognition and machine translation. There are a number of structured but challenging programming assignments. [Applications] Prerequisite: Data Structures and basic familiarity with Python, partial derivatives, matrix multiplication and probabilities. Students may receive credit for only one of EN.601.465 OR EN.601.665.

EN.601.666. Information Retrieval and Web Agents. 3 Credits.
Same material as EN.601.466, for graduate students. An in-depth, hands-on study of current information retrieval techniques and their application to developing intelligent WWW agents. Topics include a comprehensive study of current document retrieval models, mail/news routing and filtering, document clustering, automatic indexing, query expansion, relevance feedback, user modeling, information visualization and usage pattern analysis. In addition, the course explores the range of additional language processing steps useful for template filling and information extraction from retrieved documents, focusing on recent, primarily statistical methods. The course concludes with a study of current issues in information retrieval and data mining on the World Wide Web. Topics include web robots, spiders, agents and search engines, exploring both their practical implementation and the economic and legal issues surrounding their use. [Applications]

EN.601.667. Introduction to Human Language Technology. 3 Credits.
This course gives an overview of basic foundations and applications of human language technology, such as: morphological, syntactic, semantic, and pragmatic processing; machine learning; signal processing; speech recognition; speech synthesis; information retrieval; text classification; topic modelling; information extraction; knowledge representation; machine translation; dialog systems; etc. [Applications] Required Background: EN.601.226 Data Structures; knowledge of Python recommended.

Students may receive credit for only one of EN.601.467/667

EN.601.668. Machine Translation. 3 Credits.
Same material as 601.468, for graduate students. Google translate can instantly translate between any pair of over fifty human languages (for instance, from French to English). How does it do that? Why does it make the errors that it does? And how can you build something better? Modern translation systems learn to translate by reading millions of words of already translated text, and this course will show you how they work. The course covers a diverse set of fundamental building blocks from linguistics, machine learning, algorithms, data structures, and formal language theory, along with their application to a real and difficult problem in artificial intelligence. [Applications] Required course background: Data Structures and prob/stats

Students may receive credit for only one of EN.601.468 OR EN.601.668.
EN.601.670. Artificial Agents. 3 Credits.
This course covers a number of topics explored in introductory AI, such as knowledge representation, reasoning, and natural language understanding. Unlike introductory AI, we will pursue these topics based on the transformer neural architecture. We will motivate the material through interacting with agents in games: how to build models that understand user commands, how to generate responses back to a user, and how to reason about a synthetic environment to determine a course of action. Assignments will include programming, presentations on readings, and written summaries of readings. [Applications]

EN.601.674. ML: Learning Theory. 3 Credits.
This is a graduate level course in machine learning. It will provide a formal and in-depth coverage of topics in statistical and computational learning theory. We will revisit popular machine learning algorithms and understand their performance in terms of the size of the data (sample complexity), memory needed (space complexity), as well as the overall runtime (computational or iteration complexity). We will cover topics including PAC learning, uniform convergence, VC dimension, Rademacher complexity, algorithmic stability, kernel methods, online learning and reinforcement learning, as well as introduce students to current topics in large-scale machine learning and randomized projections. General focus will be on combining methodology with theoretical and computational foundations. [Analysis]

EN.601.675. Machine Learning. 3 Credits.
Same material as 601.475, for graduate students. Machine learning is a subfield of computer science and artificial intelligence, whose goal is to develop computational systems, methods, and algorithms that can learn from data to improve their performance. This course introduces the foundational concepts of modern Machine Learning, including core principles, popular algorithms and modeling platforms. This will include both supervised learning, which includes popular algorithms like SVMs, logistic regression, boosting and deep learning, as well as unsupervised learning frameworks, which include Expectation Maximization and graphical models. Homework assignments include a heavy programming component, requiring students to implement several machine learning algorithms in a common learning framework. Additionally, analytical homework questions will explore various machine learning concepts, building on the pre-requisites that include probability, linear algebra, multi-variate calculus and basic optimization. Students in the course will develop a learning system for a final project. [Applications or Analysis] Required course background: multivariable calculus, probability, linear algebra, intro to computing Students may receive credit for only one of EN.601.475 OR EN.601.675.

EN.601.676. Machine Learning: Data to Models. 3 Credits.
Same material as EN.601.476, for graduate students. How can robots localize themselves in an environment when navigating? Which factors predict whether patients are at greatest-risk for complications in the hospital? Can we reconstruct the brain’s “connectome” from fMRI data? Many such big data questions can be answered using the paradigm of probabilistic models in machine learning. This is the second course on machine learning which focuses on probabilistic graphical models. You will learn about directed and undirected graphical models, inference methods, sampling, structure learning algorithms, latent variables, and temporal models. There will be regular assignments, which include theory and some programming. Students will analyze real data for their final project, applying methods discussed in class and writing up a report of their results. [Analysis or Applications] Recommended Background: EN.600.475 or EN.601.675 or equivalent. Students may receive credit for EN.600.476 or EN.600.676, but not both. Students may receive credit for only one of EN.600.476, EN.601.476, EN.601.676.

EN.601.677. Causal Inference. 3 Credits.
"Big data" is not necessarily "high quality data." Systematically missing records, unobserved confounders, and selection effects present in many datasets make it harder than ever to answer scientifically meaningful questions. This course will teach mathematical tools to help you reason about causes, effects, and bias sources in data with confidence. We will use graphical causal models, and potential outcomes to formalize what causal effects mean, describe how to express these effects as functions of observed data, and use regression model techniques to estimate them. We will consider techniques for handling missing values, structure learning algorithms for inferring causal directionality from data, and connections between causal inference and reinforcement learning. [Analysis] Pre-requisites: familiarity with the R programming language, multivariate calculus, basics of linear algebra and probability. Students may receive credit for only one of EN.601.477 OR EN.601.677.

EN.601.681. Machine Learning: Optimization. 3 Credits.
Same material as EN.601.481, for graduate students. Optimization is at the heart of machine learning. Most machine learning problems can be posed as optimization problems. However, unlike mathematical optimization where the focus is on efficient algorithms for finding solutions with a high degree of accuracy as measured by optimality conditions, optimization for machine learning focuses on algorithms that are efficient and generalize well. In this course, we will focus on optimization for problems that arise in machine learning, design and analysis of algorithms for solving these problems, and the interplay of optimization and machine learning. The coursework will include homework assignments and a final project focusing on applying optimization algorithms to real world machine learning problems. [Analysis or Applications] Required Course Background: EN 601.475/675 Machine Learning or all of the following: 1. Linear algebra (vector spaces, normed vectors, inner product spaces, singular value decomposition) 2. Probability and Statistics (random variables, probability distributions, expectation, mean, variance, covariance, conditional probability, Bayes rule) 3. Introductory machine learning (classification, regression, empirical risk minimization, regularization) 4. Multivariate calculus (partial derivative, gradient, Jacobian, Hessian, critical points) Students may receive credit for only one of EN.601.481/681.
Deep learning (DL) has emerged as a powerful tool for solving data-intensive learning problems such as supervised learning for classification or regression, dimensionality reduction, and control. As such, it has a broad range of applications including speech and text understanding, computer vision, medical imaging, and perception-based robotics. The goal of this course is to introduce the basic concepts of deep learning (DL). The course will include a brief introduction to the basic theoretical and methodological underpinnings of machine learning, commonly used architectures for DL, DL optimization methods, DL programming systems, and specialized applications to computer vision, speech understanding, and robotics. Students will be expected to solve several DL problems on standardized data sets, and will be given the opportunity to pursue team projects on topics of their choice. [Applications] Recommended Course Background: (AS.110.201 or AS.110.212 or EN.553.291) and (EN.553.310 EN.553.311 or EN.553.420); numerical optimization recommended. Students may receive credit for EN.601.482 or EN.601.682, but not both.

EN.601.684. ML: Interpretable Machine Learning Design. 3 Credits.
There are considerable research thrusts that seek to increase the trustworthiness and perceived reliability of machine learning solutions. One such thrust, interpretable machine learning, attempts to reveal the working mechanisms of a machine learning system. However, other than on-task performance, interpretability is not a property of machine learning algorithms, but an affordance: a relationship between interpretable model and the target users in their context. Successful development of machine learning solutions that afford interpretation thus requires understanding of techniques beyond pure machine learning. In this course, we will first review the basics of machine learning and human-centered design. Then, during student team-delivered lectures, we will learn about contemporary techniques to introduce interpretability to machine learning models and discuss recent literature on the topic. In addition to hands-on homework assignments, students will work in groups to design, justify, implement, and test an interpretable machine learning algorithm for a problem of their choosing. Required course background: 601.475/675 or 601.464/664 or 601.482/682; coding in Python/PyTorch. Recommended (601.454/654, 601.290, 601.490/690 or 601.491/691) and 601.477/677.

The field of artificial intelligence (AI) has recently seen a substantial increase in popularity, largely fueled by the successes of training deep neural networks that achieve state-of-the-art performance in a large variety of problems. These successes are not limited to academic benchmarks but have started to impact our everyday lives in the form of products such as Google Lens, Amazon Alexa, and Tesla Autopilot. In order for such AI systems to succeed we must consider its impact on everyday life, its overall capabilities and performance, and the effectiveness of the human-AI interaction. The importance of harmonic interplay between all these components is dramatically highlighted by recent catastrophic events in road transport and aviation. In this project-based course you will work in teams of 3-5 students to 1) Identify a need with high-impact implications on everyday life; 2) Conceptualize and design an AI system targeting this need, and 3) Develop the AI system by refining a demo-able prototype based on feedback received during course presentations. Required course background: (EN.601.475/675 or EN.601.464/664 or EN.601.482/682) and Python programming. Recommended: 601.290 or 601.454/654 or 601.490/690 or 601.491/691 (experience with human computer interface design). (EN.601.475 OR EN.601.675) OR (EN.601.464 OR EN.601.664) OR (EN.601.482 OR EN.601.682)

EN.601.690. Introduction to Human-Computer Interaction. 3 Credits.
This course is designed to introduce undergraduate and graduate students to design techniques and practices in human-computer interaction (HCI), the study of interactions between humans and computing systems. Students will learn design techniques and evaluation methods, as well as current practices and exploratory approaches, in HCI through lectures, readings, and assignments. Students will practice various design techniques and evaluation methods through hands-on projects focusing on different computing technologies and application domains. This course is intended for undergraduate and graduate students in Computer Science/Cognitive Science/Psychology. Interested students from different disciplines should contact the instructor before enrolling in this course. [Applications] Recommended Background: Basic programming skills. Students can receive credit for either EN.601.490 or EN.601.690, but not both.

EN.601.691. Human-Robot Interaction. 3 Credits.
This course is designed to introduce graduate students to research methods and topics in human-robot interaction (HRI), an emerging research area focusing on the design and evaluation of interactions between humans and robotic technologies. Students will (1) learn design principles for building and research methods of evaluating interactive robot systems through lectures, readings, and assignments, (2) read and discuss relevant literature to gain sufficient knowledge of various research topics in HRI, and (3) work on a substantial project that integrates the principles, methods, and knowledge learned in this course. [Applications] Required course background: EN.601.220 and EN.601.226. Students may receive credit for EN.601.491 or EN.601.691.

EN.601.713. Future Networks. 3 Credits.
This will be a graduate-level networking course. New applications such as ones for metaverse require networking and computing to be imbedded together. This feature is already beginning to be implemented in 5G and 6G networks: 6G will also allow networks to be used as sensors. These advances are enabled by new technologies such as mobile edge computing, software-defined networking (SDN), network slicing, digital twins, and named-data networking (NDN). This course will start with introductory lectures on these topics. Students will be asked to study new papers and do course projects. These activities should result in longer term research projects. Required Course Background: A course in computer networks (e.g., EN.601.414/614 Computer Network Fundamentals or the equivalent), or permission of the instructor. [Systems]

EN.601.714. Advanced Computer Networks. 3 Credits.
This is a graduate-level course on computer networks. It provides a comprehensive overview on advanced topics in network protocols and networked systems. The course will cover both classic papers on Internet protocols and recent research results. It will examine a wide range of topics, e.g., routing, congestion control, network architectures, datacenter networks, network virtualization, software-defined networking, and programmable networks, with an emphasize on core networking concepts and principles. The course will include lectures, paper discussions, programming assignments and a research project. Recommended Course Background: One undergraduate course in computer networks (e.g., EN.601.414/614 Computer Network Fundamentals or the equivalent), or permission of the instructor. Course assignments and projects assume students to be comfortable with programming.
EN.601.717. Advanced Distributed Systems & Networks. 3 Credits.
The course explores the state of the art in distributed systems, networks and Internet research and practice, trying to see what it would take to push the envelope a step further. The course is conducted as a discussion group, where the professor and students brainstorm and pick interesting semester-long projects with high potential future impact. Example areas include robust scalable infrastructure (distributed datacenters, cloud networking, scada systems), real-time performance (remote surgery, trading systems), hybrid networks (mesh networks, 3G/4G/Wifi/Bluetooth). Students should feel free to bring their own topics of interest and ideas. Recommended Course Background: a systems course (distributed systems, operating systems, computer networks, parallel programming) or permission of instructor.

EN.601.718. Advanced Operating Systems. 3 Credits.
Students will study advanced operating system topics and be exposed to recent developments in operating systems research. This course involves readings on classic and new papers. Topics include virtual memory management, synchronization and communication, file systems, protection and security, operating system structure and extension techniques, fault tolerance, and history and experience of systems programming. [Systems]
EN.600.318 OR EN.600.418 OR EN.601.318 OR EN.601.418 OR EN.601.618

EN.601.723. Advanced Topics in Data-Intensive Computing. 3 Credits.
The advent of cloud computing has lead to an explosion of storage system and data analysis software, including NoSQL databases, bulk-synchronous processing, graph computing engines, and stream processing. This course will explore scale-out software architectures for data-processing tasks. It will examine the algorithms and data-structures that underlie scalable systems and look at how hardware and networking trends influence the design and deployment of cloud computing. Recommended Course Background: EN.601.320/420 or permission of instructor. [Systems]
EN.600.320 OR EN.600.420 OR EN.601.620

EN.601.740. Language-based Security. 3 Credits.
This course will introduce Language-based Security, an emerging field in cyber security that leverages techniques from compilers and program analysis for security-related problems. Topics include but are not limited to: Control-flow and data-flow graphs, Program slicing, Code property graph (CPG), and Control-flow integrity. Students are expected to read new and classic papers in this area and discuss them in class. Recommended backgrounds are Operating Systems and preferably Compilers.

EN.601.741. Advanced Topics in Secure and Censorship-Resistant Communications. 3 Credits.
Topics will vary from year to year, but will focus on applied cryptography and communications, focused on the development of secure and uncensorable communication mechanisms for communities at risk. This course will include topics such as: communication protocol design and analysis, blockchain-based protocols, anonymous communication, cryptographic backdoors, and other topics. Emphasis in this course is on understanding how cryptographic issues impact real systems, while maintaining an appreciation for grounding the work in fundamental science. The course will consist of in-class workshops and interactive discussions. There will be programming assignments and a course project with real world impact. Students will also be expected to read assigned papers and to present at least one research paper and lead a discussion on it. [Systems]
((EN.601.441 OR EN.601.641) OR (EN.601.442 OR EN.601.642) OR (EN.601.445 OR EN.601.645))

EN.601.742. Advanced Topics in Cryptography. 3 Credits.
This course will focus on advanced cryptographic topics with an emphasis on open research problems and student presentations.

EN.601.743. Advanced Topics in Computer Security. 3 Credits.
Topics will vary from year to year, but will focus mainly on network perimeter protection, host-level protection, authentication technologies, intellectual property protection, formal analysis techniques, intrusion detection and similarly advanced subjects. Emphasis in this course is on understanding how security issues impact real systems, while maintaining an appreciation for grounding the work in fundamental science. Students will study and present various advanced research papers to the class. There will be homework assignments and a course project. A college level security or crypto course at Hopkins or any other school is required.

EN.601.745. Advanced Topics in Applied Cryptography. 3 Credits.
This reading and project based course will explore the latest research in the area of applied cryptography and cryptographic engineering. Topics covered will include zero knowledge, efficient multiparty computation, cryptocurrencies, and trusted computing hardware. Readings will be drawn from the latest applied cryptography and security conferences. The course will include both reading, critical analysis, presentations and a course programming project. [Analysis or Applications]
EN.600.454 OR EN.601.445 OR EN.601.645 OR EN.600.442 OR EN.601.442 OR EN.601.642

EN.601.749. Advanced Computational Genomics: Applied Comparative Genomics. 3 Credits.
The goal of this course is to study the leading computational and quantitative approaches for comparing and analyzing genomes starting from raw sequencing data. The course will focus on human genomics and human medical applications, but the techniques will be broadly applicable across the tree of life. The topics will include genome assembly & comparative genomics, variant identification & analysis, gene expression & regulation, personal genome analysis, and cancer genomics. The grading will be based on assignments, a midterm & final exam, class presentations, and a significant class project. [Applications] Expected course background: familiarity with UNIX scripting and/or programming.

EN.601.760. FFT in Graphics & Vision. 3 Credits.
In this course, we will study the Fourier Transform from the perspective of representation theory. We will begin by considering the standard transform defined by the commutative group of rotations in 2D and translations in two- and three-dimensions, and will proceed to the Fourier Transform of the non-commutative group of 3D rotations. Subjects covered will include correlation of images, shape matching, computation of invariances, and symmetry detection. Recommended Course Background: AS.110.201 and comfort with mathematical derivations.

EN.601.765. Machine Learning: Linguistic & Sequence Modeling. 3 Credits.
This course surveys formal ingredients that are used to build structured models of character and word sequences. We will unpack recent deep learning architectures that consider various kinds of latent structure, and see how they draw on earlier work in structured prediction, dimensionality reduction, Bayesian nonparametrics, multi-task learning, etc. We will also examine a range of strategies used for inference and learning in these models. Students will be expected to read recent papers and carry out a research project. [Applications or Analysis]
EN.600.465/EN.601.465 or EN.601.665
EN.601.769. Events Semantics in Theory and Practice. 3 Credits.
This course explores selected topics in the nature of event representations from the perspective of cognitive science, computer science, linguistics, and philosophy. These fields have developed a rich array of scientific theories about the representation of events, and how humans make inferences about them -- we investigate how (and if) such theories could be applied to current research topics and tasks in computational semantics such as inference from text, automated summarization, veridicality assessment, and so on. In addition to classic articles dealing with formal semantic theories, the course considers available machine-readable corpora, ontologies, and related resources that bear on event structure, such as WordNet, PropBank, FrameNet, etc.. The course is aimed to marry theory with practice: students with either a computational or linguistic background are encouraged to participate. [Applications]

EN.601.778. Advanced Topics in Causal Inference. 3 Credits.
This course will cover advanced topics on all areas of causal inference, including learning causal effects, path-specific effects, and optimal policies from data featuring biases induced by missing data, confounders, selection, and measurement error, techniques for generalizing findings to different populations, complex probabilistic models relevant for causal inference applications, learning causal structure from data, and inference under interference and network effects. The course will feature a final project which would involve either an applied data analysis problem (with a causal inference flavor), a literature review, or theoretical work. [Analysis] Recommended Background: EN.600.477/677 or EN.601.477/677

EN.601.779. Machine Learning: Advanced Topics. 3 Credits.
This course will focus on recent advances in machine learning. Topics will vary from year to year. The course will be project focused and involve presenting and discussing recent research papers.

EN.601.780. Unsupervised Learning: From Big Data to Low-Dimensional Representations. 3 Credits.
In the era of data deluge, the development of methods for discovering structure in high-dimensional data is becoming increasingly important. This course will cover state-of-the-art methods from algebraic geometry, sparse and low-rank representations, and statistical learning for modeling and clustering high-dimensional data. The first part of the course will cover methods for modeling data with a single low-dimensional subspace, such as PCA, Robust PCA, Kernel PCA, and manifold learning techniques. The second part of the course will cover methods for modeling data with multiple subspaces, such as algebraic, statistical, sparse and low-rank subspace clustering techniques. The third part of the course will cover applications of these methods in image processing, computer vision, and biomedical imaging. Requisites include Linear Algebra, Optimization, and prior exposure to Machine I.

EN.601.783. Vision as Bayesian Inference. 3 Credits.
This is an advanced course on computer vision from a probabilistic and machine learning perspective. It covers techniques such as linear and non-linear filtering, geometry, energy function methods, markov random fields, conditional random fields, graphical models, probabilistic grammars, and deep neural networks. These are illustrated on a set of vision problems ranging from image segmentation, semantic segmentation, depth estimation, object recognition, object parsing, scene parsing, action recognition, and text captioning. [Analysis or Applications] Required course background: calculus, linear algebra (AS.110.201 or equiv.), probability and statistics (AS.553.311 or equiv.), and the ability to program in Python and C++. Background in computer vision (EN.601.461/661) and machine learning (EN.601.475) suggested but not required.

EN.601.787. Advanced Machine Learning: Machine Learning for Trustworthy AI. 3 Credits.
This course teaches advanced machine learning methods for the design, implementation, and deployment of trustworthy AI systems. The topics we will cover include but are not limited to different types of robust learning methods, fair learning methods, safe learning methods, and research frontiers in transparency, interpretability, privacy, sustainability, AI safety and ethics. Students will learn the state-of-the-art methods in lectures, understand the recent advances by critiquing research articles, and apply/innovate new machine learning methods in an application. There will be homework assignments and a course project.

EN.601.801. Computer Science Seminar. 1 Credit.
Required for all full-time CS PhD students. Recommended for MSE students.

EN.601.803. Masters Research. 3 - 10 Credits.
Permission required. Independent research for masters or pre-dissertation PhD students.

EN.601.805. Graduate Independent Study. 1 - 3 Credits.
Permission required. Individual study in an area of mutual interest to a graduate student and a faculty member in the department.

EN.601.807. Teaching Practicum. 1 Credit.
PhD students will gain valuable teaching experience, working closely with their assigned faculty supervisor. Successful completion of this course fulfills the PhD teaching requirement. (grad students) Permission req'd.

EN.601.808. Selected Topics in CS Education. 1 Credit.
This course will explore current issues and research in computer science education. Topics will be drawn from literature, news items, and participant experience. Current faculty and students with interests in academic careers are encouraged to attend.

EN.601.809. PhD Research. 3 - 20 Credits.

EN.601.810. Diversity and Inclusion in Computer Science and Engineering. 1 Credit.
This reading seminar will focus on the question of diversity and inclusion in Computer Science (in particular) and engineering (in general). We aim to study the ways in which the curriculum, environment, and structure of computer science within academia perpetuates biases alienating female and minoritized students, and to explore possible approaches for diversifying our field. The seminar will meet on a weekly basis, readings will be assigned, and students will be expected to participate in the discussion.

EN.601.814. Selected Topics in Computer Networks. 1 Credit.
In this course, we will read, discuss and present classic papers and current research in computer networks. The topic coverage will vary each semester.

EN.601.817. Selected Topics in Systems Research. 1 Credit.
This course covers latest advances in the research of computer systems including operating systems, distributed system, mobile and cloud computing. Students will read and discuss recent research papers in top systems conferences. Each week, one student will present the paper and lead the discussion for the week. The focus topics covered in the papers vary semester to semester. Example topics include fault-tolerance, reliability, verification, energy efficiency, and virtualization.

EN.601.819. Selected Topics in Cloud Computing and Networked Systems. 1 Credit.
Participants will read and discuss seminal and recent foundational research on cloud and networked systems.
EN.601.826. Selected Topics in Programming Languages. 1 Credit.
This seminar course covers recent developments in the foundations of programming language design and implementation. Topics covered include type theory, process algebra, higher-order program analysis, and constraint systems. Students will be expected to present papers orally.

EN.601.831. CS Theory Seminar. 1 Credit.
Seminar series in theoretical computer science. Topics include algorithms, complexity theory, and related areas of TCS. Speakers will be a mix of internal and external researchers, mostly presenting recently published research papers.

EN.601.833. Seminar in Algorithms. 1 Credit.
This course will explore algorithms and theoretical computer science with a focus on algorithms for massive data. Examples of topics include streaming algorithms, approximation algorithms, online algorithms. Students will be encouraged to select a paper and lead a discussion. External speakers will be invited to present current work as well. This course is a good opportunity for motivated students to learn modern algorithmic methods. Recommended Course Background: EN.601.433 or equivalent.

EN.601.845. Selected Topics in Applied Cryptography. 1 Credit.
In this course students will read, discuss and present current research papers in applied cryptography. Topic coverage will vary each semester. Instructor approval required.

EN.601.849. Selected Topics in Computational Immunogenomics. 1 Credit.
Immunology studies defensive mechanisms of living organisms against external threats. Computational immunogenomics is a new branch of bioinformatics that develops and applies computational approaches to the study and interpretation of immunological data, seeking to answer questions about human adaptive immune responses to various pathogens, including but not limited to flu, HIV, and SARS-CoV-2. In this course, students will attend lectures and present immunogenomics papers in a journal club format.

EN.601.856. Seminar: Medical Image Analysis. 1 Credit.
This weekly seminar will focus on research issues in medical image analysis, including image segmentation, registration, statistical modeling, and applications. It will also include selected topics relating to medical image acquisition, especially where they relate to analysis. The purpose of the course is to provide the participants with a thorough background in current research in these areas, as well as to promote greater awareness and interaction between multiple research groups within the University. The format of the course is informal. Students will read selected papers. All students will be expected to present their papers orally. The paper is scheduled for discussion, but individual students will be assigned on a rotating basis to lead the discussion on particular papers or sections of papers. Co-listed with En.520.746.

EN.601.857. Selected Topics in Computer Graphics. 1 Credit.
In this course we will review current research in computer graphics. We will meet for an hour once a week and one of the participants will lead the discussion for the week.