AS.250 (BIOPHYSICS)

AS.250.105. Science and Film. 2 Credits.
From the origins of cinema to the present, science and technology have remained the most reliably popular subjects for filmmakers and audiences alike. This course will address that enduring fascination, exploring the meanings and uses of science and technology in film through guest lectures and discussion of cinematic examples both recent and historic. Lectures and discussion will focus on a range of questions: How does film both reflect and shape our understanding of scientific concepts and technologies, from artificial intelligence to genetic engineering? How does science fiction reveal contemporary cultural anxieties and address ethical questions? How “fictional” is the science in science fiction film? What can we learn about “real” science from the movies? In addition to exploring science through film, students will learn the tools of film analysis through lecture, close viewing and completion of a series of short written responses. Possible films to be discussed: 2001: A Space Odyssey, Her, Ex Machina, GATTACA, Minority Report, Eternal Sunshine of the Spotless Mind, Forbidden Planet, The Matrix, and more. Attendance at weekly screenings required.

AS.250.131. Freshman Seminar in Biophysics. 1 Credit.
Introduction of contemporary biophysics research topics through presentations, discussion and hands-on exercise. Freshmen only. S/U grading only.
Area: Natural Sciences

AS.250.205. Introduction to Computing. 3 Credits.
This course will introduce students to basic computing concepts and tools useful in many applications and disciplines, not only the life sciences. Students learn to work in the Unix environment, to write shells scripts, and to make use of powerful Unix commands (e.g grep, awk, and sed). They will learn to program using the Python programming language, graphing software, and a package for numerical and statistical computing, such as Mathematica or MATLAB. At the end of the semester students will complete a project coupling all components of the semester together. Brief lectures followed by extensive hands-on computer laboratories with examples from many disciplines. No prerequisites. Course offered every semester.
Prerequisite(s): You cannot take AS.250.205 if you have already taken AS.250.206.
Area: Natural Sciences, Quantitative and Mathematical Sciences

AS.250.253. Protein Engineering and Biochemistry Lab. 3 Credits.
This laboratory examines the relationship between genes and proteins in the context of disease and evolution. It is a research project lab in which the structural and functional consequences of mutations are determined for a model protein. Students will learn basic protein science and standard biochemical techniques and methods in protein engineering. They will perform experiments in site-directed mutagenesis, protein purification, and structural, functional and physical characterization of proteins. No prerequisites. Courses offered in Fall and Spring semesters.
Prerequisite(s): You cannot take AS.250.253 if you have already taken AS.250.254.; Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Natural Sciences

Writing Intensive

AS.250.254. Protein Biochemistry and Engineering Laboratory. 4 Credits.
A project laboratory where students will use the techniques of protein engineering to attempt to modify existing proteins to endow them with new structural or physical properties. This course will provide an introduction to standard biochemistry laboratory practice and to protein science, including experiments in site-directed mutagenesis, protein purification and characterization of proteins in regard to structure, function and stability.
Prerequisite(s): You cannot take AS.250.254 if you have already taken AS.250.253.
Area: Natural Sciences

AS.250.302. Modeling the Living Cell. 4 Credits.
Previously titled "Models and Algorithms in Biophysics." Introduction to physical and mathematical models used to represent biophysical systems and phenomena. Students will learn algorithms for implementing models computationally and perform basic implementations. We will discuss the types of approximations made to develop useful models of complex biological systems, and the comparison of model predictions with experiment.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Engineering, Natural Sciences

AS.250.310. Exploring Protein Biophysics using Nuclear Magnetic Resonance (NMR) Spectroscopy. 3 Credits.
NMR is a spectroscopic technique which provides unique, atomic level insights into the inner workings of biomolecules in aqueous solution and solid state. A wide variety of biophysical properties can be studied by solution state NMR, such as the three dimensional structures of biological macromolecules, their dynamical properties in solution, interactions with other molecules and their physical and chemical properties which modulate structure-function relationships (such as electrostatics and redox chemistry). NMR exploits the exquisite sensitivity of magnetic properties of atomic nuclei to their local electronic (and therefore, chemical) environment. As a result, biophysical properties can be studied at atomic resolution, and the global properties of a molecule can be deconstructed in terms of detailed, atomic level information. In addition, interactions between nuclei can be exploited to enhance the information content of NMR spectra via multidimensional (2D and 3D) spectroscopy. Since these properties can be studied in solution, NMR methods serve as an effective complement to X-Ray crystallography and electron microscopy. In this course, we will learn about the basics of NMR spectroscopy, acquire 1D and 2D NMR spectra and use various NMR experiments to characterize and probe biophysical properties of proteins at an atomic level.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module. ; ((AS.030.101 AND AS.030.105) OR (AS.030.103 OR AS.030.204)) AND (AS.030.370 OR AS.250.372) AND (AS.020.305 OR AS.030.315 OR AS.250.315) AND AS.030.205 or permission of the instructor.
AS.250.315. Biochemistry I. 3 Credits.
Foundation for advanced classes in Biophysics and other quantitative biological disciplines. This class is the first semester of a two-semester course in biochemistry. Topics in Biochemistry I include chemical and physical properties of biomolecules and energetic principles of catabolic pathways. Co-listed with AS.030.315
Prerequisite(s): If you have completed AS.250.307 you may not register for AS.250.315; AS.030.206 OR AS.030.212
Area: Natural Sciences

AS.250.316. Biochemistry II. 3 Credits.
Biochemical anabolism, nucleic acid structure, molecular basis of transcription, translation and regulation, signal transduction with an emphasis on physical concepts and chemical mechanisms. Format will include lectures and class discussion of readings from the literature.
Prerequisite(s): (AS.250.315 OR AS.030.315 OR AS.020.305) AND (AS.030.206 OR AS.030.212) or permission of the instructor.

AS.250.320. Macromolecular Binding. 3 Credits.
All biological processes require the interactions of macromolecules with each other or with ligands that activate or inhibit their activities in a controlled manner. This course will discuss theoretical principles, logic, approaches and practical considerations used to study these binding processes from a quantitative perspective. Topics will include thermodynamics, single and multiple binding equilibria, linkage relationships, cooperativity, allostery, and macromolecular assembly. Some biophysical methods used in the study of binding reactions will be discussed. Computer simulation and analysis of binding curves will be used to analyze binding data, and binding schemes and examples from the scientific literature will be reviewed and discussed. Recommended Course Background: AS.250.372 Biophysical Chemistry
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Writing Intensive

AS.250.335. Single Molecule & Cell Biophysics. 3 Credits.
This (elective) course offers an introduction to the field of single molecule and single cell biophysics to second and third year undergraduate students in biophysics. We will examine technologies such as single molecule fluorescence, force measurements and single cell fluorescence detections that enable high precision molecular visualizations in vitro and in cells. In addition, we will cover topics of genome engineering, cell mechanics and optogenetics toward the end of the semester. Each student is expected to read two articles assigned for each week and submit a written summary. All students will take turns presenting the assigned articles to class.

AS.250.351. Reproductive Physiology. 2 Credits.
Focuses on reproductive physiology and biochemical and molecular regulation of the female and male reproductive tracts. Topics include the hypothalamus and pituitary, peptide and steroid hormone action, epididymis and male accessory sex organs, female reproductive tract, menstrual cycle, ovulation and gamete transport, fertilization and fertility enhancement, sexually transmitted diseases, and male and female contraceptive methods. Introductory lectures on each topic followed by research-oriented lectures and readings from current literature.
Area: Natural Sciences

AS.250.372. Biophysical Chemistry. 4 Credits.
Course covers classical and statistical thermodynamics, spanning from simple to complex systems. Major topics include the first and second law, gases, liquids, chemical mixtures and reactions, partition functions, conformational transitions in peptides and proteins, ligand binding, and allostery. Methods for thermodynamic analysis will be discussed, including calorimetry and spectroscopy. Students will develop and apply different thermodynamic potentials, learn about different types of ensembles and partition functions. Students will use Python for data fitting and for statistical and mathematical analysis. A brief review of Python will be included, but completion of Introduction to Scientific Computing (AS.250.205) or an equivalent is strongly recommended. Background: Calculus, basic Organic Chemistry, Introductory Physics, and introductory Python programming.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Natural Sciences

AS.250.381. Spectroscopy and Its Application in Biophysical Reactions. 3 Credits.
Continues Biophysical Chemistry (AS.250.372). Fundamentals of quantum mechanics underlying various spectroscopies (absorbance, circular dichroism, fluorescence, NMR); application to characterization of enzymes and nucleic acids.
Area: Natural Sciences

AS.250.383. Molecular Biophysics Laboratory. 3 Credits.
An advanced inquiry based laboratory course covering experimental biophysical techniques to introduce fundamental physical principles governing the structure/function relationship of biological macromolecules. Students will investigate a "model protein", staphylococcal nuclease, the "hydrogen atom" of biophysics. Using a vast library of variants, the effect of small changes in protein sequence will be explored. A variety of techniques will be used to probe the equilibrium thermodynamics and kinetic properties of this system; chromatography, spectroscopy (UV-Vis, fluorescence, circular dichroism, nuclear magnetic resonance), calorimetry, analytical centrifugation, X-ray crystallography, mass spectroscopy, and computational methods as needed for analysis. These methods coupled with perturbations to the molecular environment (ligands, co-solvents, and temperature) will help to elucidate protein function. Prerequisite: Introduction to Scientific Computing (250.205) or equivalent. Biophysical Chemistry (250.372 OR 020.370) or equivalent. Course taught in Fall and Spring.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Writing Intensive
AS.250.403. Advanced Seminar in Biokinetics. 3 Credits.
The trait shared by all living systems is the capacity to perform energy
transduction. This biophysics/biochemistry course examines the
physico-chemical and structural basis of biological energy transduction.
Emphasis is on understanding the molecular and cellular logic of the
flow of energy in living systems. The course explores the connection
between fundamental physical requirements for energy transduction and
the organization, evolution and possibly even the origins of biological
molecules, cells, and organisms. Implications for planet earth’s energy
balance and for the design of synthetic organisms and of artificial energy
transducing machines will be discussed, time permitting. Recommended
Course Background: One semester of Biochemistry. Recommended
Course Background: One semester of Biochemistry

Writing Intensive

AS.250.411. Advanced Seminar in Structural Biology of Chromatin. 3
Credits.
Focus is on structural and physical aspects of DNA processes in cells,
such as nucleosomal packaging, DNA helicases, RNA polymerase,
and RNA inhibition machinery. Topics are meant to illustrate how the
structural and chemical aspects of how proteins and nucleic acids are
studied to understand current biological questions. Recommended
Course Background: Biochemistry I (AS.250.315) and Biochemistry II
(AS.250.316) or Biochemistry (AS.020.305) and Intro to Biophys Chem
(AS.250.372)
Area: Natural Sciences
Writing Intensive

AS.250.420. Advanced Seminar in Macromolecular Binding. 3 Credits.
All biological processes require the interactions of macromolecules
with each other or with ligands that activate or inhibit their activities
in a controlled manner. This is a literature and skills-based course that
will discuss theoretical principles, logic, approaches and practical
considerations used to study these binding processes from a quantitative
perspective. Topics will include thermodynamics, single and multiple
binding equilibria, linkage relationships, cooperativity, allostericy,
and macromolecular assembly. Some biophysical methods used in the
study of binding reactions will be discussed. Simulation and analysis of
binding scenarios will be used to analyze illustrate binding schemes, and
examples from the scientific literature will be reviewed and discussed.
Basic working knowledge of Python is helpful. The writing component
will be in one of the common formats employed in the professional
biophysics field. Recommended Course Background: AS.250.372
Biophysical Chemistry
Writing Intensive

AS.250.421. Advanced Seminar in Membrane Protein Structure, Function
& Pharmacology. 3 Credits.
Topics are meant to illustrate the physical basis of membranes
and membrane proteins towards understanding their functions and
pharmacological importance including aspects of drug design as it
relates to membranes. Contemporary issues in the field will be covered
using primary literature articles, structural manipulations in pymol, and
computational binding simulations. Recommended Course Background:
AS.030.205, AS.250.307, and AS.250.372
Writing Intensive

AS.250.514. Research in Protein Design and Evolution. 3 Credits.
Prerequisite(s): You must request Independent Academic Work using
the Independent Academic Work form found in Student Self-Service:
Registration > Online Forms.
Writing Intensive

AS.250.520. Introduction to Biophysics Research. 3 Credits.
Prerequisite(s): You must request Independent Academic Work using
the Independent Academic Work form found in Student Self-Service:
Registration > Online Forms.

AS.250.521. Research in Biophysics. 3 Credits.
Prerequisite(s): You must request Independent Academic Work using
the Independent Academic Work form found in Student Self-Service:
Registration > Online Forms.

Graduate students only. Students and invited speakers present current
topics in the field.

Graduate students only. Students and invited speakers present current
topics in the field.

AS.250.610. Savvy Science Seminars.
Oral presentations are one of the main forms by which scientists
communicate their results. Whether in the context of the classroom, the
relatively informal lab meeting or as an invited speaker at an international
colloquium, the ability to effectively present scientific results is an
important skill to master. This course will cover the planning and
execution steps necessary to produce an engaging oral presentation.
Students will learn to articulate the big biological questions, tell a story
that stimulates interest in their chosen subject, and effectively convey
their experimental findings. Key methodological steps in planning will
guide students on how to create slides with compelling visuals, and how
to use technology to their advantage. Students will each prepare, present,
and receive feedback on a 15-minute talk on their thesis project in the
style of the Biophysical Society short talks. In addition, each student
will receive and evaluate a video of their presentation so they can see
themselves through the eyes of others.

AS.250.615. Biophysics Writing Workshop.
A series of writing workshops designed to help Biophysics Graduate
Students develop a proposal of thesis work. Each student will write a
specific aims page and a full (6 page) proposal.

AS.250.620. Optical Spectroscopy.
Basics of absorbance, CD, and fluorescence spectroscopy, calorimetric
methods.
Prerequisite(s): Students must have completed Lab Safety training prior
to registering for this class.

AS.250.621. X-ray diffraction.
Basics of X-ray diffraction methods

AS.250.622. Statistics and Data Analysis.
Basics of statistics and data analysis

Basics of molecular dynamics

AS.250.624. NMR Spectroscopy.
Basics of NMR spectroscopy

Basic Principles of Single Molecule Measurements
Prerequisite(s): Students must have completed Lab Safety training prior
to registering for this class. To access the tutorial, login to myLearning
and enter 458083 in the Search box to locate the appropriate module.
Cells are actively-driven soft materials but also efficient sensors and information processors. This course will cover the physics of those cellular functions, from the mechanics of DNA to the sensing of chemical signals. Questions answered include: How does polymer physics limit how quickly chromosomes move? Why do cells use long, thin flagella to swim? What limits the accuracy of a cell’s chemotaxis? Some experience with partial differential equations required. No biology knowledge beyond the high school level necessary. Some problem sets will require minimal programming.
Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.
Area: Natural Sciences

AS.250.649. Introduction to Computing in Biology.
In this four-week, intensive introductory course, students will gain a practical working knowledge of programming languages and packages for analyzing data from biochemical and biophysical experiments. The course covers fundamentals of UNIX, Python, Mathematica and MATLAB. Brief daily lectures are followed by extensive hands-on experience in the computer laboratory.

The structure of proteins, DNA and RNA, and their functions in living systems. Students are required to participate in class discussions based on readings from the primary scientific literature. Co-requisite: AS 250.649 Introduction to Computing in Biology. Instructor permission for undergraduates.
Prerequisite(s): Prerequisite: AS.250.649, may be taken concurrently.

AS.250.689. Physical Chemistry of Biological Macromolecules.
Introduction to the principles of thermodynamics and kinetics as applied to the study of the relationship between structure, energy dynamics, and biological function of proteins and nucleic acids. Topics include classical, chemical, and statistical thermodynamics, kinetics, theory of ligand binding, and conformational equilibria.

AS.250.801. Dissertation Research.

ME.100.300. Research Practicum.
N/A

ME.100.600. Scientific Foundations of Medicine-Macromolecules.

ME.100.699. Biophysics Elective.
For Medical Students only. Specialized Topics in Biophysics. Refer to Medical Student Electives Book located at https://www.hopkinsmedicine.org/som/students/academics/electives.html.

Lecture will offer an introduction to the mathematical aspects of computer representation and manipulation of macromolecules

ME.100.706. Fundamentals Of Protein Crystallography.
An introductory course designed to present the core knowledge and theoretical underpinnings of protein crystallography necessary to function in the laboratory. Assigned readings and problem sets will be given.

ME.100.707. Advanced Topics in Protein Crystallography.
An introductory course designed to present the core knowledge and theoretical underpinnings of protein crystallography necessary to function in the laboratory. Assigned readings and problem sets will be given.

ME.100.708. Physical Basis of Macromolecular Structure.

ME.100.709. Macromolecular Structure and Analysis.
The course will cover the structure and properties of biological macromolecules and the key methods used to study them, including X-ray crystallography, nuclear magnetic resonance, spectroscopy, microscopy, and mass spectrometry.

ME.100.710. Biochemical and Biophysical Principles.
The physical and chemical principles underlying biological processes are presented and discussed. Topics include thermodynamics, chemical equilibrium, chemical and enzymatic kinetics, electrochemistry, physical chemistry of solutions, and structure and properties of water. Elementary concepts of statistical thermodynamics will be introduced as a way of correlating macroscopic and microscopic properties.

ME.100.711. Structure Determination.

The laboratory course will familiarize students with practical aspects of molecular modeling. It teaches the necessary tools to create and manipulate computer generated models of biological-interest molecules. Techniques such as comparative modeling will be introduced.

ME.100.713. Using Structure to Understand Biology.
The goal of this course is to teach students how to make use of structural information in the PDB using commonly available tools that are accessible to the non-expert. Students will learn how to read a structure paper, understand structure quality and limits of interpretation, and use coordinates from the Protein Data Bank to explore a structure and make figures. Topics covered will include non-covalent interactions, modeling point mutants, identifying binding pockets, making homology models, and calculating electrostatic surface potentials. Classes will combine lectures, hand-on computer demonstrations and critical reading of papers. A final project will require a short write-up and presentation that implements the programs and principles learned in the class

This elective course offers an introduction to the field of single molecule and single cell biophysics to graduate students in Johns Hopkins University and will be delivered in the School of Medicine. We will examine technologies such as single molecule fluorescence and force measurements, super-resolution imaging and single cell fluorescence detections that enable high precision molecular visualizations in vitro and in cells.

ME.100.715. Proteins and Nucleic Acids II.
Critical reading and analysis of primary source literature is vital to scientific discourse and discovery. Students will be responsible for analyzing and critiquing papers in diverse topics and systems ranging from replication, transcription, and translation to enzyme mechanism, drug resistance, innate immunity, and signaling. Methods covered will include structural, biochemical, single-molecule, single-cell, and genomic approaches. Students will deliver analytic presentations on at least two ground-breaking papers relevant to these areas, and will be expected to actively participate in class discussion of experimental methodology and logic of other papers assigned in the course.

ME.100.716. Analysis of Macromolecules.
The course will cover (1) macromolecules, (2) physical chemical principles dictating their biological behavior, and (3) methods to study them. Lectures will focus on practical application of the methods, experimental design, data collection, and elementary aspects of data analysis.

ME.100.801. Research.
Thesis research

ME.100.802. Topics in Biophysical Chemistry.

N/A
ME.100.804. Topics in Macromolecular Structure and Function.
This is a seminar course covering a variety of topics involving the structure and function of proteins and nucleic acids. Recent topics have included: protein folding, evolutionary significance of introns, protein-DNA interactions, solution structure of peptides, prospects for designing novel proteins, and two-dimensional NMR.

ME.100.805. Frontiers in Biophysics and Biochemistry.

ME.100.806. Critical Papers in Biophysics.

ME.100.807. Research.
Thesis Research

ME.100.808. Topics in Macromolecular Structure and Function II.
This is the second part of a seminar course covering a variety of topics involving the structure and function of proteins and nucleic acids. Recent topics have included: protein folding, evolutionary significance of introns, protein-DNA interactions, solution structure of peptides, prospects for designing novel proteins, and two-dimensional NMR.

ME.100.809. Independent Research (Statistics).