• Skip to Content
  • AZ Index
  • Catalogue Home
  • Johns Hopkins University Home
Johns Hopkins University
Academic Catalogue | 2024-25 Edition
Class Schedule Search
Search location
  • Catalogue Home
  • Programs
  • Courses
  • Policies & Information
  • Print Options
  • Archives
  • Amendments

Physics and Astronomy

Zanvyl Krieger School of Arts and Sciences

Catalogue Home

  • Explore our Programs
  • University-​wide Policies and Information
    • Academic Policies and Information
      • Academic Calendar
      • Academic Integrity Policies
      • Animal Care and Use Program
      • Credit Hour Policy
      • FERPA
      • PHD Specific Policies
      • Student Leave of Absence Policy
      • Student Status (Course Load)
      • Transcripts and Enrollment Verifications
    • Admission and Aid
      • Tuition, Fees, and Cost of Attendance
        • Financial Aid
    • Higher Education Act Disclosures
      • General Institutional Information
      • Health and Safety Information
      • Student Financial Assistance Information
    • Office of Institutional Equity
      • Discrimination and Harassment Policy and Procedures
      • Equal Opportunity and Title IX Notice
      • Sexual Misconduct Policy and Procedures
    • Rights, Privileges, and Responsibilities
      • Academic Grievance Policy: Students and Postdoctoral Fellows
      • New Child Accommodations for Full-​Time Graduate Students and Postdoctoral Trainees
      • Personal Relationships Policy
      • Photography and Film Rights Policy
      • Student Conduct Code
      • Student Disability Services (SDS)
      • Student Health
    • Veterans Affairs
  • Bloomberg School of Public Health
    • Academic Calendar
    • Admission
    • CEPH Requirements
    • Departments
      • Department of Biochemistry and Molecular Biology
        • Biochemistry and Molecular Biology, MHS
        • Biochemistry and Molecular Biology, ScM
        • Biochemistry and Molecular Biology, PhD
        • Non-​Degree Training
      • Department of Biostatistics
        • Biostatistics, MHS
        • Biostatistics, ScM
        • Biostatistics, PhD
      • Department of Environmental Health and Engineering
        • Environmental Health, MHS
        • Environmental Health, SCM
        • Toxicology for Human Risk Assessment, MS
        • Environmental Health, PhD
        • Non-​Degree Training
      • Department of Epidemiology
        • Epidemiology, MHS
        • Epidemiology, ScM
        • Epidemiology, PhD
        • Non-​Degree Training
      • Department of Health, Behavior and Society
        • Health Education and Health Communication, MSPH
        • Genetic Counseling, ScM
        • Health, Behavior, and Society, MHS
        • Health, Behavior and Society, PhD
        • Non-​Degree Training
      • Department of Health Policy and Management
        • Health Administration, MHA
        • Health Economics and Outcomes Research, MHS
        • Health Finance and Management, MHS
        • Health Policy, MSPH
        • Health Policy and Management, PhD
        • Health Policy and Management, DrPH (Tsinghua)
        • Non-​Degree Training
      • Department of International Health
        • Global Health Economics, MHS
        • International Health, MSPH
        • International Health, MSPH, Human Nutrition-​Dietitian
        • International Health, MA/​MSPH
        • International Health, PhD
        • Non-​Degree Training
      • Department of Mental Health
        • Mental Health, MHS
        • Mental Health, PhD
        • Non-​Degree Training
      • Department of Molecular Microbiology &​ Immunology
        • Molecular Microbiology &​ Immunology, MHS
        • Molecular Microbiology &​ Immunology, ScM
        • Molecular Microbiology &​ Immunology, PhD
        • Non-​Degree Training
      • Department of Population, Family and Reproductive Health
        • Population, Family and Reproductive Health, MHS
        • Population, Family and Reproductive Health, MHS Online
        • Population, Family and Reproductive Health, MSPH
        • Population, Family and Reproductive Health, PhD
      • Doctor of Public Health (DrPH)
      • Graduate Training Programs in Clinical Investigation
        • Graduate Training Programs in Clinical Investigation, MHS
        • Graduate Training Programs in Clinical Investigation, PhD
        • Graduate Training Programs in Clinical Investigation, ScM
      • Master of Arts in Public Health Biology
      • Master of Bioethics
      • Master of Public Health Program
        • DNP/​MPH
        • DVM/​MPH
        • JD/​MPH
        • LLM/​MPH
        • MBA/​MPH with China Europe International Business School
        • MD/​MPH
        • MPH/​MBA
        • MSW/​MPH
      • MAS-​Office
        • Master of Applied Science in Community-​Based Primary Health Care Programs in Global Health
        • Master of Applied Science in Humanitarian Health
        • Master of Applied Science in Patient Safety and Healthcare Quality
        • Master of Applied Science in Population Health Management
        • Master of Applied Science in Spatial Analysis for Public Health
      • Residency Programs
        • General Preventive Medicine Residency Program
        • Occupational and Environmental Medicine Residency
    • Certificates
      • Adolescent Health, Certificate
      • Bioethics, Certificate
      • Climate and Health, Certificate
      • Clinical Trials, Certificate
      • Community-​Based Public Health, Certificate
      • Demographic Methods, Certificate
      • Environmental and Occupational Health, Certificate
      • Epidemiology for Public Health Professionals, Certificate
      • Evaluation: International Health Programs, Certificate
      • Food Systems, the Environment &​ Public Health, Certificate
      • Gender and Health, Certificate
      • Gerontology, Certificate
      • Global Digital Health, Certificate
      • Global Health, Certificate
      • Global Health Practice, Certificate
      • Health and Human Rights, Certificate
      • Health Communication, Certificate
      • Health Disparities and Health Inequality, Certificate
      • Health Education, Certificate
      • Health Finance and Management, Certificate
      • Healthcare Epidemiology and Infection Prevention and Control, Certificate
      • Humane Sciences and Toxicology Policy, Certificate
      • Humanitarian Health, Certificate
      • Implementation Science and Research Practice, Certificate
      • Injury and Violence Prevention, Certificate
      • International Healthcare Management and Leadership, Certificate
      • Leadership for Public Health and Healthcare, Certificate
      • Lesbian, Gay, Bisexual, Transgender, and Queer (LGBTQ) Public Health, Certificate
      • Maternal and Child Health, Certificate
      • Mental Health Policy, Economics and Services, Certificate
      • Pharmacoepidemiology and Drug Safety, Certificate
      • Population and Health, Certificate
      • Population Health Management, Certificate
      • Product Stewardship for Sustainability, Certificate
      • Public Health Advocacy, Certificate
      • Public Health Economics, Certificate
      • Public Health Informatics, Certificate
      • Public Health Practice, Certificate
      • Public Health Preparedness, Certificate
      • Public Health Training Certificate for American Indian Health Professionals
      • Public Mental Health Research, Certificate
      • Quality, Patient Safety, and Outcomes Research, Certificate
      • Quantitative Methods in Public Health, Certificate
      • Rigor, Reproducibility and Responsibility in Scientific Practice, Certificate
      • Risk Sciences and Public Policy, Certificate
      • Spatial Analysis for Public Health, Certificate
      • Training Certificate in Public Health
      • Tropical Medicine, Certificate
      • Vaccine Science and Policy, Certificate
    • Policies
      • Academic
        • Academic Ethics Code
        • Compliance Line
        • Grade Appeal Policy
        • Grading System
        • Graduation Policy
        • Interdivisional Registration
        • Multi-​Term Course Policy
        • Post-​Doctoral Fellow Student Status
        • Student Grievance Policy
        • Voluntary Leave of Absence Policy
      • Research
        • Animal Research
        • Human Subjects Research
        • Worker's Compensation
  • Carey Business School
    • Admission
      • Master’s Programs
      • Certificate Programs
      • Graduate Degree Requirements
      • International Student Admission Policy
      • Verification of Credentials
      • Other Admission Policies
    • Degrees and Certificates
      • Business Administration (Flexible), MBA
      • Business Administration (Full Time), MBA
      • Business Analytics and Risk Management (Part Time), Master of Science
      • Business Analytics and Risk Management, Master of Science
      • Design Leadership, MBA/​MA Dual Degree
      • Finance (Part Time), Master of Science
      • Finance, Master of Science
      • Financial Management, Graduate Certificate
      • Financial Management, Graduate Certificate, Investments, Graduate Certificate, Applied Economics, MS
      • Health Care Management (Part Time), Master of Science
      • Health Care Management, Master of Science
      • Information Systems, Master of Science
      • Investments, Graduate Certificate
      • Leadership Development Program, Graduate Certificate
      • Marketing (Part Time), Master of Science
      • Marketing, Master of Science
      • MBA/​Applied Economics, MS Dual Degree
      • MBA/​Biotechnology, MS Dual Degree
      • MBA/​Communication, MA Dual Degree
      • MBA/​DNP Dual Degree
      • MBA/​Government, MA Dual Degree
      • MBA/​Healthcare Organizational Leadership, MSN Dual Degree
      • MBA/​JD Dual Degree
      • MBA/​MA in International Relations
      • MBA/​MD Dual Degree
      • MBA/​MPH Dual Degree
      • Real Estate and Infrastructure (Part Time), Master of Science
      • Real Estate and Infrastructure, Master of Science
      • Business, Minor
    • Policies and Resources
      • Academic Calendar
      • Academic Ethics Policy
      • Academic Progress and Standards
      • Changing Degree Program
      • Grading Policy
      • Graduation
      • Attendance Policy
      • Leave of Absence
      • Registration
      • Student Accounts
      • Transfer of Graduate Credit
      • Waiver Exams
  • Peabody Institute
    • General Information, Procedures and Regulations
      • Introduction and Nomenclature
      • Mission
      • Accreditation
      • Links
      • Honor Societies
    • Procedural Information
      • Applicability
      • Studio Assignments
      • Course Numbering
      • Large Ensemble Participation
      • Competitions
      • Recitals
      • Academic Advising
      • Inter-​Institutional Academic Arrangements
      • Study Abroad Program
      • Outside Instruction and Public Performance
    • Academic Regulations
      • Applicability
      • Academic Code of Conduct
      • Program Classification, Status, and Credit Limits
      • Sources of Credit
      • Grading System and Regulations
      • Dean's List Criteria
      • Academic Standing
      • Registration Regulations
      • Attendance and Absences
      • Interruption of Degree Work
      • Graduation Eligibility
    • Degree and Diploma Programs
      • Bachelor of Fine Arts in Dance (BFA)
      • Bachelor of Music (BM)
        • Curricula
          • Bachelor of Music in Composition
          • Bachelor of Music in Jazz Performance
          • Bachelor of Music in Music Education
            • Bachelor of Music in Music Education -​ Composition
            • Bachelor of Music in Music Education-​ Guitar
            • Bachelor of Music in Music Education -​ Jazz
            • Bachelor of Music in Music Education -​ Orchestral Instruments
            • Bachelor of Music in Music Education -​ Piano
            • Bachelor of Music in Music Education -​ Voice
          • Bachelor of Music in Music for New Media
          • Bachelor of Music in Performance
            • Bachelor of Music in Performance -​ Computer Music
            • Bachelor of Music in Performance -​ Guitar
            • Bachelor of Music in Performance -​ Harpsichord
            • Bachelor of Music in Performance -​ Historical Performance
            • Bachelor of Music in Performance -​ Orchestral Instruments
            • Bachelor of Music in Performance -​ Organ
            • Bachelor of Music in Performance -​ Piano
            • Bachelor of Music in Performance -​ Voice
          • Bachelor of Music in Recording Arts &​ Sciences
            • Bachelor of Music in Recording Arts &​ Sciences -​ Composition
            • Bachelor of Music in Recording Arts &​ Sciences -​ Computer Music
            • Bachelor of Music in Recording Arts &​ Sciences -​ Guitar
            • Bachelor of Music in Recording Arts &​ Sciences -​ Jazz
            • Bachelor of Music in Recording Arts &​ Sciences -​ Orchestral Instruments
            • Bachelor of Music in Recording Arts &​ Sciences -​ Piano
        • Minors
          • Business of Music, Minor
          • Directed Studies, Minor
          • Historical Performance, Minor
          • Historical Performance: Voice, Minor
          • Liberal Arts, Minor
          • Music Theory, Minor
          • Musicology, Minor
        • Combined Degree Programs
          • Peabody-​Homewood Double Degree Program
        • Accelerated Graduate Degrees
          • Five-​Year BM/​MM Program
          • Five-​Year BMRA/​MA Program
            • Five-​Year BM/​MA: Music for New Media Variant
      • Master of Music (MM)
        • Master of Music in Composition
        • Master of Music in Film and Game Scoring
        • Master of Music: Performance
          • Master of Music, Performance -​ Choral Conducting Specialization
          • Master of Music, Performance -​ Computer Music specialization
          • Master of Music, Performance -​ Guitar specialization
          • Master of Music, Performance -​ Harpsichord specialization
          • Master of Music, Performance -​ Historical Performance Instruments specialization
          • Master of Music, Performance -​ Historical Performance Voice specialization
          • Master of Music, Performance -​ Jazz specialization
          • Master of Music, Performance -​ Orchestral Conducting specialization
          • Master of Music, Performance -​ Orchestral Instruments specialization
          • Master of Music, Performance -​ Organ specialization
          • Master of Music, Performance -​ Piano specialization
          • Master of Music, Performance -​ Wind Conducting specialization
          • Master of Music, Performance -​ Voice specialization
        • Master of Music: Academic Majors
          • Performance, Master of Music -​ Pedagogy emphasis
          • Music Education, Master of Music
          • Musicology, Master of Music
          • Music Theory Pedagogy, Master of Music
        • Master of Music: Low Residency
      • Master of Arts (MA)
        • Audio Sciences: Acoustics, Master of Arts
          • Five-​Year BM/​MA Program Requirements: Acoustics
        • Audio Sciences: Recording Arts and Sciences, Master of Arts
          • Five-​Year BM/​MA Program Requirements: Recording Arts
      • Doctor of Musical Arts (DMA)
        • Composition, Doctor of Musical Arts
        • Performance, Doctor of Musical Arts -​ Guitar specialization
        • Performance, Doctor of Musical Arts -​ Historical Performance Instruments specialization
        • Performance, Doctor of Musical Arts -​ Orchestral Conducting specialization
        • Performance, Doctor of Musical Arts -​ Orchestral Instruments specialization
        • Performance, Doctor of Musical Arts -​ Organ specialization
        • Performance, Doctor of Musical Arts -​ Piano specialization
        • Performance, Doctor of Musical Arts -​ Voice specialization
        • Performance, Doctor of Musical Arts -​ Wind Conducting specialization
      • Performer’s Certificate (PC)
        • Guitar, Performer's Certificate
        • Orchestral Instruments, Performer's Certificate
        • Organ, Performer's Certificate
        • Piano, Performer's Certificate
        • Voice, Performer's Certificate
      • Graduate Performance Diploma (GPD)
      • Artist’s Diploma (AD)
    • Extension Study
      • Music Education Certification -​ Instrumental
      • Music Education Certification -​ Vocal
  • Nitze School of Advanced International Studies
    • Degrees and Certificates
      • International Studies, Doctor of Philosophy
      • International Affairs, Doctor of
      • European Public Policy, Master of Arts
      • Global Policy, Master of Arts
      • Global Risk, Master of Arts (On-​site)
      • Global Risk, Master of Arts (Online)
      • International Affairs, Master of Arts
      • International Economics and Finance, Master of Arts
      • International Relations, Master of Arts
      • International Studies, Master of Arts
      • International Public Policy, Master of
      • Strategy, Cybersecurity, and Intelligence, Master of Arts
      • Sustainable Energy, Master of Arts (Online)
      • Chinese and American Studies, Hopkins-​Nanjing Center Certificate
      • Dual Degrees and Exchange Programs
      • Graduate Certificates
      • International Studies, Diploma
    • Policies and Resources
      • Academic Integrity
      • Academic Policies and Resources
      • Student Life
    • School Leadership and Key Contacts
  • School of Education
    • Academic and Student Policies
      • Academic and Student Conduct Policies
      • Academic Standards
      • Grading System and Academic Records
      • Grievances and Complaints
    • Admission
    • Graduation
    • Programs
      • Doctoral Programs
        • Education (Online), EdD
        • Education, PhD
      • Master's Programs
        • Counseling, Master of Science
        • Education, Master of Science
          • Education, Master of Science – Digital Age Learning and Educational Technology (Online)
          • Education, Master of Science -​ Educational Studies
          • Education, Master of Science -​ Gifted Education
          • Education, Master of Science -​ School Administration and Supervision
        • Education Policy, Master of Science
        • Health Professions (Online), Master of Education
        • Special Education, Master of Science
        • Teaching Professionals, Master of Education
      • Post Master's Certificates
        • Applied Behavior Analysis, Post–Master’s Certificate
        • Clinical Mental Health Counseling, Post–Master’s Certificate
        • Evidence-​Based Teaching in the Health Professions, Post–Master’s Certificate
      • Certificate of Advanced Graduate Study
        • Counseling, Certificate of Advanced Graduate Study
      • Graduate Certificates
        • Education of Students with Autism and Other Pervasive Developmental Disorders, Graduate Certificate
        • Educational Leadership for Independent Schools, Graduate Certificate
        • Gifted Education, Graduate Certificate
        • Leadership in Technology Integration (Online), Graduate Certificate
        • Mathematics/​STEM Instructional Leader (PreK-​6) (Online), Graduate Certificates
        • Mind, Brain and Teaching (Online), Graduate Certificate
        • School Administration and Supervision, Graduate Certificate
        • Urban Education, Graduate Certificate
    • Centers &​ Institutes
    • Scholarships
    • State Authorization of Distance Education (NC-​SARA)
  • School of Medicine
    • General Information
      • Conduct in Teacher/​Learner Relationships (Student Mistreatment Policy)
      • Lectureships and Visiting Professorships
      • Loan Funds
      • Medical Student Advising
      • Named Professorships
      • Office of Medical Student Affairs
      • Scholarships
      • Student Research Scholarships and Awards
      • Tuition
      • Tuition and Other Fees
      • Young Investigators’ Day
    • Policies
    • Graduate Programs
      • Anatomy Education, MS
      • Applied Health Sciences Informatics, MS
      • Biochemistry, Cellular and Molecular Biology, PhD
      • Biological Chemistry, PhD
      • Biomedical Engineering, PhD
      • Biophysics and Biophysical Chemistry, PhD/​Molecular Biophysics, PhD
      • Cellular and Molecular Medicine, PhD
      • Cellular and Molecular Physiology, PhD
      • Clinical Anaplastology, MS
      • Clinical Informatics, Post-​Baccalaureate Certificate
      • Cross-​Disciplinary Program in Biomedical Sciences, PhD
      • Functional Anatomy and Evolution, PhD
      • Health Sciences Informatics, PhD
      • Health Sciences Informatics–Research, MS
      • History of Medicine, MA (On-​site)
      • History of Medicine, MA (Online)
      • History of Medicine, PhD
      • History of Medicine, Post-​Baccalaureate Certificate (Online)
      • Human Genetics and Genomics, PhD
      • Immunology, PhD
      • Medical and Biological Illustration, MA
      • Medical Physics, MS
      • Neuroscience, PhD
      • Pathobiology, PhD
      • Pharmacology, PhD
    • Medical Program
      • Doctor of Medicine, MD
      • MD-​PhD, Combined Degree
      • Subject Areas
        • Anesthesiology and Critical Care Medicine
        • Biological Chemistry
        • Biomedical Engineering
        • Biophysics and Biophysical Chemistry
        • Cell Biology
        • Department of Genetic Medicine
        • Dermatology
        • Emergency Medicine
        • Epidemiology
        • Functional Anatomy and Evolution
        • Gynecology and Obstetrics
        • Health Sciences Informatics
        • History of Medicine
        • Medicine
        • Molecular and Comparative Pathobiology
        • Molecular Biology and Genetics
        • Multi-​Department Courses
        • Neurology
        • Neuroscience
        • Oncology
        • Ophthalmology
        • Pathology
        • Pediatrics
        • Pharmacology and Molecular Sciences
        • Physical Medicine and Rehabilitation
        • Physiology
        • Psychiatry and Behavioral Sciences
        • Public Health
        • Radiation Oncology and Molecular Radiation Sciences
        • Radiology and Radiological Science
        • Section of Surgical Sciences
    • Postdoctoral Fellows
  • School of Nursing
    • Admission
    • Advising
    • Certificates
      • Healthcare Organizational Leadership, Post-​Master’s Certificate
      • Nursing Education, Post-​Master's Certificate
      • Pediatric Acute Care Nurse Practitioner, Post-​Master's Certificate
      • Psychiatric Mental Health Nurse Practitioner, Post-​Master's Certificate
    • Doctoral Degrees
      • Doctor of Nursing Practice, Advanced Practice Track
        • Adult-​Gerontological Acute Care Nurse Practitioner, DNP Advanced Practice Track
        • Adult-​Gerontological Critical Care Clinical Nurse Specialist, DNP Advanced Practice Track
        • Adult-​Gerontological Health Clinical Nurse Specialist, DNP Advanced Practice Track
        • Adult-​Gerontological Primary Care Nurse Practitioner, DNP Advanced Practice Track
        • Family Primary Care Nurse Practitioner, DNP Advanced Practice Track
        • Nurse Anesthesia, DNP Advanced Practice Track
        • Pediatric Critical Care Clinical Nurse Specialist, DNP Advanced Practice Track
        • Pediatric Dual Primary/​Acute Care Nurse Practitioner, DNP Advanced Practice Track
        • Pediatric Primary Care Nurse Practitioner, DNP Advanced Practice Track
        • Psychiatric Mental Health Nurse Practitioner, DNP Advanced Practice Track
      • Doctor of Nursing Practice: Executive Track
      • Nursing, Doctor of Philosophy
      • Doctor of Nursing Practice (DNP): Advanced Practice Track/​Doctor of Philosophy in Nursing (PhD) Dual Degree
    • Dual Degrees
      • DNP Executive/​MBA Dual Degree
      • DNP Executive/​MPH Dual Degree
      • Healthcare Organizational Leadership, MSN/​MBA, Dual Degree
    • Financial Aid
    • Master's Degrees
      • Entry into Nursing, Master of Science in Nursing
      • Healthcare Organizational Leadership Track, Master of Science in Nursing
    • Online Prerequisites for Health Professions
    • Policies
      • Academic Integrity Policy
      • Academic Standards for Progression
      • Administrative Leave
      • Absence and Attendance Policy
      • Canvas and SON IT Help
      • Clinical Placements
      • Clinical Warnings
      • Complaint/​Grievance Policy
      • Compliance
      • Course Policies
      • Criminal Conduct/​Background Check Policies
      • Drug Testing Policy
      • Email Policy
      • Examination Policy
      • Grading Policy
      • Health Insurance for Students
      • Incomplete Coursework
      • Independent Study Policy
      • Leave of Absence
      • Letters of Recommendation
      • NCLEX
      • Non-​Degree-​Seeking Students
      • Notification of Missed Clinical Time
      • Pet Guidelines
      • Printing and Copying
      • Professional Attire Policy
      • Professional Ethics Policy
      • Registration Policies and Procedures
      • Religious Observance Attendance Policy
      • Social Media Guidelines
      • Student Code of Conduct
      • Technical Standards for Admission and Graduation
      • Transcripts and Enrollment Verifications
      • Transfer of Graduate Credit
      • Withdrawal Policy
    • Student Accounts
    • Tuition and Fees
  • Whiting School of Engineering
    • Full-​time, On-​campus Undergraduate and Graduate Programs (Homewood)
      • Zanvyl Krieger School of Arts and Sciences &​ Whiting School of Engineering Full-​Time, On-​Campus Undergraduate and Graduate Policies
      • Departments, Program Requirements, and Courses
        • Applied Mathematics and Statistics
          • Applied Mathematics and Statistics, Bachelor of Arts
          • Applied Mathematics and Statistics, Bachelor of Science
          • Applied Mathematics and Statistics, Master of Science in Engineering
          • Applied Mathematics and Statistics, Minor
          • Applied Mathematics and Statistics, PhD
          • Data Science, Master's Degree
          • Financial Mathematics, Master of Science in Engineering
        • Biomedical Engineering
          • Bioengineering Innovation and Design, Master of Science in Engineering
          • Biomedical Engineering, Bachelor of Arts
          • Biomedical Engineering, Bachelor of Science
          • Biomedical Engineering, Master of Science in Engineering
          • Biomedical Engineering, PhD through the School of Medicine
        • Center for Leadership Education
          • Accounting and Financial Management, Minor
          • Engineering Management, Master of Science
          • Global Innovation and Leadership Through Engineering, Master of Science
          • Leadership Studies, Minor
          • Marketing and Communications, Minor
          • Professional Communication Program
          • Professional Development Program
          • W.P. Carey Entrepreneurship and Management, Minor
        • Chemical and Biomolecular Engineering
          • Chemical and Biomolecular Engineering, Bachelor of Science
          • Chemical and Biomolecular Engineering, Master of Science in Engineering
          • Chemical and Biomolecular Engineering, PhD
        • Civil &​ Systems Engineering
          • Civil Engineering, Bachelor of Science
          • Civil Engineering, Master of Science in Engineering (MSE)
          • Civil Engineering, Minor
          • Civil and Systems Engineering, PhD
          • Systems Engineering, Bachelor of Science
          • Systems Engineering, Master of Science
          • Systems Engineering, Minor
        • Computational Medicine
          • Computational Medicine, Minor
        • Computer Science
          • Computer Science, Bachelor of Arts
          • Computer Science, Bachelor of Science
          • Computer Science, Master of Science in Engineering
          • Computer Science, Minor
          • Computer Science, PhD
        • Doctor of Engineering
          • Engineering, Doctor of Engineering
        • Electrical and Computer Engineering
          • Computer Engineering, Bachelor of Science
          • Electrical and Computer Engineering, Master of Science in Engineering
          • Electrical and Computer Engineering, PhD
          • Electrical Engineering, Bachelor of Science
          • Energy, Minor
        • Environmental Health and Engineering
          • Engineering for Sustainable Development, Minor
          • Environmental Engineering, Bachelor of Science
          • Environmental Engineering, Minor
          • Environmental Sciences, Minor
          • Geography and Environmental Engineering, Master of Arts
          • Geography and Environmental Engineering, Master of Science
          • Geography and Environmental Engineering, Master of Science in Engineering
          • Geography and Environmental Engineering, PhD
          • Occupational and Environmental Hygiene, Master of Science
        • General Engineering
          • General Engineering, Bachelor of Arts
        • Information Security Institute
          • Security Informatics, Master of Science
          • Security Informatics, Master of Science/​Applied Mathematics and Statistics, Master of Science in Engineering Dual Master's Program
          • Security Informatics, Master of Science/​Computer Science, Master of Science in Engineering Dual Master's Program
        • Materials Science and Engineering
          • Materials Science and Engineering, Bachelor of Science
          • Materials Science and Engineering, Master of Science in Engineering
          • Materials Science and Engineering, PhD
        • Mechanical Engineering
          • Engineering Mechanics, Bachelor of Science
          • Mechanical Engineering, Bachelor of Science
          • Mechanical Engineering, Master of Science in Engineering
          • Mechanical Engineering, PhD
        • NanoBioTechnology
        • Robotics and Computational Sensing
          • Computer Integrated Surgery, Minor
          • Robotics, Master of Science in Engineering
          • Robotics, Minor
      • Multi-​School Programs of Study
        • Business, Minor
        • Peabody-​Homewood Double Degree Program
        • Space Science and Engineering
    • Part-​Time, Online Graduate Programs (Engineering for Professionals)
      • Academic Policies
        • Academic Calendar
        • Academic Regulations
        • Registration Policies
        • Tuition and Fees
      • Admission Requirements
      • Applied and Computational Mathematics
        • Applied and Computational Mathematics, Graduate Certificate
        • Applied and Computational Mathematics, Master of Science
        • Applied and Computational Mathematics, Post-​Master’s Certificate
      • Applied Biomedical Engineering
        • Applied Biomedical Engineering, Graduate Certificate
        • Applied Biomedical Engineering, Master of Science
        • Applied Biomedical Engineering, Post-​Master’s Certificate
      • Applied Physics
        • Applied Physics, Master of Science
        • Applied Physics, Post-​Master’s Certificate
      • Artificial Intelligence
        • Artificial Intelligence, Graduate Certificate
        • Artificial Intelligence, Master of Science
      • Chemical and Biomolecular Engineering
        • Chemical and Biomolecular Engineering, Master of Chemical and Biomolecular Engineering
      • Civil Engineering
        • Civil Engineering, Graduate Certificate
        • Civil Engineering, Master of Civil Engineering
      • Computer Science
        • Computer Science, Graduate Certificate
        • Computer Science, Master of Science
        • Computer Science, Post-​Master’s Certificate
      • Cybersecurity
        • Cybersecurity, Graduate Certificate
        • Cybersecurity, Master of Science
        • Cybersecurity, Post-​Master’s Certificate
      • Data Science
        • Data Science, Graduate Certificate
        • Data Science, Master of Science
        • Data Science, Post-​Master’s Certificate
      • Electrical and Computer Engineering
        • Electrical and Computer Engineering, Graduate Certificate
        • Electrical and Computer Engineering, Master of Science
        • Electrical and Computer Engineering, Post-​Master’s Certificate
      • Engineering Management
        • Engineering Management, Graduate Certificate
        • Engineering Management, Master of Engineering Management
      • Environmental Engineering, Science, Management, and Sustainability Programs
        • Climate Change, Energy, and Environmental Sustainability, Graduate Certificate
        • Climate, Energy, and Environmental Sustainability, Master of Science
        • Environmental Engineering
          • Environmental Engineering, Graduate Certificate
          • Environmental Engineering, Master of Environmental Engineering
          • Environmental Engineering, Post-​Master’s Certificate
        • Environmental Engineering and Science
          • Environmental Engineering and Science, Graduate Certificate
          • Environmental Engineering and Science, Master of Science
          • Environmental Engineering and Science, Post-​Master’s Certificate
        • Environmental Planning and Management
          • Environmental Planning and Management, Graduate Certificate
          • Environmental Planning and Management, Master of Science
          • Environmental Planning and Management, Post-​Master’s Certificate
      • Financial Mathematics
        • Financial Mathematics, Master of Science
        • Financial Risk Management, Graduate Certificate
        • Quantitative Portfolio Management, Graduate Certificate
        • Securitization, Graduate Certificate
      • Healthcare Systems Engineering
        • Healthcare Systems Engineering, Master of Science
      • Industrial and Operations Engineering
        • Industrial and Operations Engineering, Master of Science
      • Information Systems Engineering
        • Information Systems Engineering, Graduate Certificate
        • Information Systems Engineering, Master of Science
        • Information Systems Engineering, Post-​Master’s Certificate
      • Materials Science and Engineering
        • Materials Science and Engineering, Master of Science
      • Mechanical Engineering
        • Mechanical Engineering, Master of Science
        • Mechanical Engineering, Post-​Master’s Certificate
      • Occupational and Environmental Hygiene
        • Occupational and Environmental Hygiene, Master of Science
      • Robotics and Autonomous Systems
        • Robotics and Autonomous Systems, Master of Science
      • Space Systems Engineering
        • Space Systems Engineering, Master of Science
        • Space Systems Engineering, Post-​Master's Certificate
      • Systems Engineering
        • Systems Engineering, Graduate Certificate
        • Systems Engineering, Master of Science
        • Systems Engineering, Master of Science in Engineering (ABET-​accredited)
        • Systems Engineering, Post-​Master’s Certificate
  • Zanvyl Krieger School of Arts and Sciences
    • Full-​time, On-​campus Undergraduate and Graduate Programs (Homewood)
      • Zanvyl Krieger School of Arts and Sciences &​ Whiting School of Engineering Full-​Time, On-​Campus Undergraduate and Graduate Policies
      • Departments, Program Requirements, and Courses
        • Anthropology
          • Anthropology, Bachelor of Arts
          • Anthropology, Minor
          • Anthropology, PhD
        • Archaeology
          • Archaeology, Bachelor of Arts
          • Archaeology, Minor
        • Behavioral Biology Program
          • Behavioral Biology, Bachelor of Arts
        • Bioethics
          • Bioethics, Minor
        • Biology
          • Biology, Bachelor of Arts
          • Biology, Bachelor of Arts/​Master of Science
          • Biology, PhD
          • Molecular &​ Cellular Biology, Bachelor of Science/​Master of Science
          • Molecular and Cellular Biology, Bachelor of Science
        • Biophysics
          • Biophysics, Bachelor of Arts
          • Biophysics, Fifth-​Year Master’s Degree
          • Biophysics, PhD -​ Jenkins Biophysics Program
          • Biophysics, PhD -​ Program in Molecular Biophysics
        • Center for Africana Studies
          • Africana Studies, Bachelor of Arts
          • Africana Studies, Minor
        • Center for Economy and Society
          • Moral and Political Economy, Bachelor of Arts
        • Center for Language Education
        • Chemical Biology
          • Chemical Biology, PhD
        • Chemistry
          • Chemistry, Bachelor of Science
          • Chemistry, PhD
        • Classics
          • Classics, Bachelor of Arts
          • Classics, Bachelor of Arts/​Master of Arts
          • Classics, Minor
          • Classics, PhD
        • Cognitive Science
          • Cognitive Science, Bachelor of Arts
          • Cognitive Science, Master of Arts
          • Cognitive Science, PhD
          • Linguistics, Minor
        • Comparative Thought and Literature
          • Humanistic Studies, PhD
        • Earth and Planetary Sciences
          • Earth and Planetary Sciences, PhD
          • Earth and Planetary Sciences, Bachelor of Arts
          • Earth and Planetary Sciences, Minor
          • Energy, Minor
          • Environmental Science, Bachelor of Science
          • Environmental Studies, Bachelor of Arts
          • Environmental Studies, Minor
        • East Asian Studies
          • East Asian Studies, Bachelor of Arts
          • East Asian Studies, Minor
        • Economics
          • Economics, Bachelor of Arts
          • Economics, Minor
          • Economics, PhD
          • Financial Economics, Minor
        • English
          • English, Bachelor of Arts
          • English, Minor
          • English, PhD
        • Film and Media Studies
          • Film and Media Studies, Bachelor of Arts
          • Film and Media Studies, Minor
        • History
          • History, Bachelor of Arts
          • History, Bachelor of Arts/​Master of Arts Four-​Year Program
          • History, Minor
          • History, PhD
        • History of Art
          • History of Art, Bachelor of Arts
          • History of Art, Minor
          • History of Art, PhD
          • History of Art, Bachelor of Arts/​Master of Arts
        • History of Science and Technology
          • History of Science and Technology, PhD
          • History of Science, Medicine and Technology, Minor
          • History of Science, Medicine, and Technology, Bachelor of Arts
        • Interdisciplinary Studies
          • Interdisciplinary Studies, Bachelor of Arts
        • International Studies
          • International Studies, Bachelor of Arts
          • International Studies B.A./​M.A. Program with Sciences Po
          • International Studies B.A./​M.A. Program with the Paul H. Nitze School of Advanced International Studies (SAIS)
        • Islamic Studies
          • Islamic Studies, Minor
        • Jewish Studies
          • Jewish Languages and Literatures, PhD
          • Jewish Studies, Minor
        • Latin American, Caribbean, and Latinx Studies (LACLxS)
          • Latin American, Caribbean, and Latinx Studies, Bachelor of Arts
          • Latin American, Caribbean, and Latinx Studies, Minor
        • Mathematics
          • Mathematics, Bachelor of Arts
          • Mathematics, Minor
          • Mathematics, Bachelor of Arts/​Master of Arts
          • Mathematics, PhD
        • Medicine, Science, and the Humanities
          • Medicine, Science, and the Humanities, Bachelor of Arts
        • Military Science
        • Modern Languages and Literatures
          • Film and Media Studies, Graduate Certificate
          • French, Bachelor of Arts
          • French, Minor
          • French, PhD
          • German Bachelor of Arts/​Master of Arts
          • German, Bachelor of Arts
          • German, Minor
          • German, PhD
          • Italian, Bachelor of Arts
          • Italian, Minor
          • Italian, PhD
          • Romance Languages, Bachelor of Arts
          • Spanish, Bachelor of Arts
          • Spanish for the Professions, Minor
          • Spanish Language and Hispanic Cultures, Minor
          • Spanish, PhD
        • Museums and Society
          • Museums and Society, Minor
        • Music
          • Music, Minor
        • Natural Sciences Area Major
          • Natural Sciences Area, Bachelor of Arts
        • Near Eastern Studies
          • Near Eastern Studies, Bachelor of Arts
          • Near Eastern Studies, Minor
          • Near Eastern Studies, PhD
        • Neuroscience
          • Neuroscience, Bachelor of Science
          • Neuroscience, Bachelor of Science/​Master of Science
        • Philosophy
          • Philosophy, Bachelor of Arts
          • Philosophy, Bachelor of Arts/​Master of Arts
          • Philosophy, Minor
          • Philosophy, PhD
        • Physics and Astronomy
          • Astronomy and Astrophysics, PhD
          • Physics, Bachelor of Arts
          • Physics, Bachelor of Science
          • Physics, Bachelor of Science/​Master of Science
          • Physics, Minor
          • Physics, PhD
        • Political Science
          • Political Science, Bachelor of Arts
          • Political Science, PhD
        • Psychological and Brain Sciences
          • Psychology, Bachelor of Arts
          • Psychology, Minor
          • Psychology, PhD
        • Public Health Studies
          • Public Health Studies, Bachelor of Arts
        • SNF Agora Institute
          • Civic Life, Minor
        • Sociology
          • Sociology, Bachelor of Arts
          • Sociology, PhD
          • Sociology, PhD/​Applied Mathematics and Statistics, MSE Joint Program
        • Space Science and Engineering
          • Space Science and Engineering, Minor
        • Study of Women, Gender, and Sexuality
          • Women, Gender, and Sexuality, Minor
        • Theatre Arts and Studies
          • Theatre Arts and Studies, Minor
        • Visual Arts
          • Visual Arts, Minor
        • Writing Seminars
          • Writing Seminars Minor
          • Writing Seminars, Bachelor of Arts
          • Writing Seminars, Master of Fine Arts
      • Multi-​School Programs of Study
    • Graduate and Professional Programs (Advanced Academic Programs)
      • About Krieger School of Arts and Sciences
      • Administration and Faculty
      • Admission
      • Alumni
      • Current Students
        • Academic Regulations for Online Courses
        • Academic Structure
        • Grades /​ Performance /​ Conduct
        • Graduation Requirements
        • Registration
        • Tuition and Fees
      • Programs
        • Applied Economics, Master of Science
          • Applied Economics, MS/​ Investment Certificate
          • Applied Economics, MS/​Financial Management Certificate
        • Applied Economics, MS/​MBA Dual Degree
        • Center for Data Analytics, Policy, and Government
          • Data Analytics and Policy, Master of Science
            • Data Analytics and Policy, MS/​Intelligence, Certificate
          • Data Analytics and Policy, Certificate
          • Geospatial Intelligence, Master of Science
          • Global Security Studies, Master of Arts
            • Global Security Studies, MA/​Intelligence, Certificate
          • Government, MA/​MBA
          • Government, Master of Arts
            • Government, MA/​Intelligence, Certificate
          • Intelligence Analysis, Master of Science
          • Intelligence, Certificate
          • Non-​Profit Management, Master of Arts
          • Non-​Profit Management, Certificate
          • Public Management, Master of Arts
            • Public Management, MA/​Data Analytics and Policy, Certificate
            • Public Management, MA/​Intelligence, Certificate
            • Public Management, MA/​Non-​Profit Management, Certificate
        • Center for Biotechnology Education
          • Bioinformatics, Master of Science
          • Biotechnology, Master of Science
          • Biotechnology, MS/​MBA
          • Biotechnology Education, Certificate
          • Biotechnology Enterprise, Certificate
          • Food Safety Regulation, Master of Science
          • Individualized Genomics and Health, Master of Science
          • Master of Biotechnology Enterprise and Entrepreneurship
          • Regenerative and Stem Cell Technologies, Master of Science
          • Regulatory Science, Master of Science
          • Sequence Analysis and Genomics, Post-​Master's Certificate
        • Communication, Master of Arts
          • Communication, Master of Arts/​MBA
          • Communication, Master of Arts/​Non-​Profit Management, Certificate
        • Cultural Heritage Management, Master of Arts
          • Cultural Heritage Management, MA/​Digital Curation, Certificate
          • Cultural Heritage Management, MA/​Non-​Profit Management, Certificate
        • Digital Curation, Certificate
        • Energy Policy and Climate, Master of Science
        • Environmental Sciences and Policy, Master of Science
          • Environmental Sciences and Policy, MS/​Geographic Information Systems, Certificate
        • Film and Media, Master of Arts
        • Financial Economics, Master of Science
        • Geographic Information Systems, Master of Science
          • Geographic Information Systems, Certificate
        • Master of Liberal Arts
        • Museum Studies, Master of Arts
          • Museum Studies, MA/​Digital Curation, Certificate
          • Museum Studies, MA/​Non-​Profit Management, Certificate
        • Organizational Leadership, Master of Science
        • Quantitative Methods in Applied Economics, Post-​Master’s Certificate
        • Research Administration, Master of Science
        • Science Writing, Master of Arts
          • Science Writing, Certificate
        • Teaching Writing, Master of Arts
          • Teaching Writing, Certificate
        • Writing, Master of Arts
  • Zanvyl Krieger School of Arts and Sciences &​ Whiting School of Engineering Full-​Time, On-​Campus Undergraduate and Graduate Policies
    • Graduate Policies
      • Academic Policies
      • Admissions and Finances
      • Graduate-​Specific Policies
      • Student Life
        • International Graduate Students
    • Undergraduate Policies
      • Academic Policies
        • Requirements for a Bachelor's Degree
        • Student Status
        • Registration Policies
        • Grading Policies
        • Academic Standing Policies
        • External Credit Policies
        • Study Abroad Policies
        • Graduation Policies
      • Student Life Policies
  • Course Descriptions
    • AS.001 (AS First Year Seminars)
    • AS.004 (AS University Writing Program)
    • AS.010 (History of Art)
    • AS.020 (Biology)
    • AS.030 (Chemistry)
    • AS.040 (Classics)
    • AS.050 (Cognitive Science)
    • AS.060 (English)
    • AS.061 (Film and Media Studies)
    • AS.070 (Anthropology)
    • AS.080 (Neuroscience)
    • AS.100 (History)
    • AS.110 (Mathematics)
    • AS.130-​134 (Near Eastern Studies)
    • AS.136 (Archaeology)
    • AS.140 (History of Science, Medicine, and Technology)
    • AS.145 (Medicine, Science and the Humanities)
    • AS.150 (Philosophy)
    • AS.171-​173 (Physics &​ Astronomy)
    • AS.180 (Economics)
    • AS.190-​191 (Political Science)
    • AS.192 (International Studies)
    • AS.194 (Islamic Studies)
    • AS.196 (Agora Institute)
    • AS.197 (Economy and Society)
    • AS.200 (Psychological &​ Brain Sciences)
    • AS.210-​217 (Modern Languages &​ Literatures)
    • AS.220 (Writing Seminars)
    • AS.225 (Theatre Arts &​ Studies)
    • AS.230 (Sociology)
    • AS.250 (Biophysics)
    • AS.270-​271 (Earth &​ Planetary Sciences)
    • AS.280 (Public Health Studies)
    • AS.290 (Behavioral Biology)
    • AS.300 (Comparative Thought and Literature)
    • AS.310 (East Asian Studies)
    • AS.360 (Interdepartmental)
    • AS.361 (Latin American, Caribbean, and Latinx Studies)
    • AS.362 (Center for Africana Studies)
    • AS.363 (Study of Women, Gender, &​ Sexuality)
    • AS.370/​373/​375/​377-​381 (Center for Language Education)
    • AS.371 (Art)
    • AS.374 (Military Science)
    • AS.376 (Music)
    • AS.389 (Program in Museums and Society)
    • AS.410 ( Biotechnology)
    • AS.420 ( Environmental Sciences)
    • AS.425 ( Energy Policy and Climate)
    • AS.430 ( Geographic Information Systems)
    • AS.440 ( Applied Economics)
    • AS.450 ( Liberal Arts)
    • AS.455 ( Film and Media)
    • AS.460 ( Museum Studies)
    • AS.465 ( Cultural Heritage Management)
    • AS.470 ( Government)
    • AS.472 ( Geospatial Intelligence)
    • AS.475 ( Research Administration)
    • AS.480 ( Communication)
    • AS.485 ( Organizational Leadership)
    • AS.490 ( Writing)
    • AS.491 ( Science Writing)
    • AS.492 ( Teaching Writing)
    • AS.492 (Non-​Departmental)
    • AS.999 (AAP)
    • BU.001 (Graduate Business)
    • BU.001 (MBA)
    • BU.120 (Management)
    • BU.132 (Real Estate)
    • BU.210 (Finance)
    • BU.300 (Information Systems)
    • BU.410 (Marketing)
    • BU.510 (Quantitative Methods)
    • BU.550 (Business of Health)
    • BU.610 (Operations Management)
    • ED (Education)
    • EN.500 (General Engineering)
    • EN.501 (EN First Year Seminars)
    • EN.510 (Materials Science &​ Engineering)
    • EN.515 (Materials Science and Engineering)
    • EN.520 (Electrical &​ Computer Engineering)
    • EN.525 (Electrical and Computer Engineering)
    • EN.530 (Mechanical Engineering)
    • EN.535 (Mechanical Engineering)
    • EN.540 (Chemical &​ Biomolecular Engineering)
    • EN.545 (Chemical and Biomolecular Engineering)
    • EN.553 (Applied Mathematics &​ Statistics)
    • EN.555 (Financial Mathematics)
    • EN.560 (Civil and Systems Engineering)
    • EN.565 (Civil Engineering)
    • EN.570 (Environmental Health and Engineering)
    • EN.575 (Environmental Engineering and Science)
    • EN.575 (Environmental Engineering)
    • EN.575 (Environmental Planning and Management)
    • EN.580 (Biomedical Engineering)
    • EN.585 (Applied Biomedical Engineering)
    • EN.595 (Engineering Management)
    • EN.601 (Computer Science)
    • EN.605 (Computer Science)
    • EN.615 (Applied Physics)
    • EN.620 (Robotics)
    • EN.625 (Applied and Computational Mathematics)
    • EN.635 (Information Systems Engineering)
    • EN.645 (Systems Engineering)
    • EN.650 (Information Security Institute)
    • EN.655 (Healthcare Systems Engineering)
    • EN.660-​663 (Center for Leadership Education)
    • EN.665 (Robotics and Autonomous Systems)
    • EN.670 (Institute for NanoBio Technology)
    • EN.675 (Space Systems Engineering)
    • EN.685 (Data Science)
    • EN.695 (Cybersecurity)
    • EN.700 (Doctor of Engineering)
    • EN.705 (Artificial Intelligence)
    • ME.100 (Biophsyics and Biophysical Chemistry)
    • ME.110 (Cell Biology)
    • ME.120 (Art as Applied to Medicine)
    • ME.130 (Functional Anatomy and Evolution)
    • ME.140 (Gynecology and Obstetrics)
    • ME.150 (The History of Medicine)
    • ME.200 (Neurology)
    • ME.210 (Biomedical Engineering)
    • ME.220 (Dermatology)
    • ME.250 (Medicine)
    • ME.250 (Health Sciences Informatics)
    • ME.260 (Molecular Biology and Genetics)
    • ME.280 (Ophthalmology)
    • ME.290 (Otolaryngology-​Head and Neck Surgery)
    • ME.300 (Pathology)
    • ME.320 (Pediatrics)
    • ME.330 (Pharmacology and Molecular Sciences)
    • ME.340 (Biological Chemistry)
    • ME.360 (Physiology)
    • ME.370 (Psychiatry and Behavioral Sciences)
    • ME.380 (Surgery)
    • ME.381 (Plastic and Reconstructive Surgery)
    • ME.390 (Neurological Surgery)
    • ME.400 (Orthopedic Surgery)
    • ME.420 (Radiology and Radiological Science)
    • ME.440 (Neuroscience)
    • ME.520 (Emergency Medicine)
    • ME.510 (Oncology Center)
    • ME.560 (Urology)
    • ME.570 (Anesthesiology and Critical Care Medicine)
    • ME.580 (Biomedical Engineering)
    • ME.600 (Health Sciences Informatics)
    • ME.680 (Molecular and Comparative Pathobiology)
    • ME.700 (Immunology)
    • ME.710 (Human Genetics)
    • ME.711 (Berman Bioethics Institute)
    • ME.716 (Physical Medicine and Rehabilitation)
    • ME.717 (Radiation Oncology and Molecular Radiation Sciences)
    • ME.800 (Interdepartmental)
    • NR (Nursing)
    • PH.120 (Biochemistry and Molecular Biology)
    • PH.140 (Biostatistics)
    • PH.220 (International Health)
    • PH.260 (Molecular Microbiology and Immunology)
    • PH.300 (Health Policy and Management)
    • PH.330 (Mental Health)
    • PH.340 (Epidemiology)
    • PH.380 (Population Family and Reproductive Health)
    • PH.390 (Clinical Investigation)
    • PH.410 (Health Behavior and Society)
    • PH.550 (Extradepartmental Studies)
    • PH.600 (MAS-​Office)
    • PH.700 (Berman Institute)
    • PY.010 (Studio Lessons)
    • PY.113 (Recitals)
    • PY.123 (General Studies)
    • PY.123 (Professional Studies)
    • PY.250 (Humanities -​ Language)
    • PY.260 (Humanities -​ Liberal Arts)
    • PY.310 (Composition)
    • PY.320 (New Media)
    • PY.330 (Conducting)
    • PY.350 (Computer Music)
    • PY.380 (Historical Performance)
    • PY.410 (Brass)
    • PY.415 (Percussion)
    • PY.420 (Harp)
    • PY.425 (Strings)
    • PY.430 (Woodwinds)
    • PY.450 (Ensemble Arts)
    • PY.450 (Piano/​Keyboard)
    • PY.460 (Organ)
    • PY.470 (Guitar)
    • PY.510 (Music Education)
    • PY.520 (Pedagogy)
    • PY.530 (Voice)
    • PY.540 (Opera)
    • PY.550 (Recording Arts and Sciences)
    • PY.570 (Jazz)
    • PY.610 (Musicology)
    • PY.710 (Music Theory)
    • PY.715 (Music Theory -​ ET/​SS)
    • PY.715 (Music Theory -​ Keyboard Studies)
    • PY.800 (Dance)
    • PY.910 (Ensembles -​ Large)
    • PY.950 (Ensembles -​ Small/​Chamber)
    • SA.100 (Core Courses)
    • SA.310 (International Economics)
    • SA.500 (Development, Climate and Sustainability)
    • SA.501 (Technology and Innovation)
    • SA.502 (Security, Strategy and Statecraft)
    • SA.503 (Governance, Politics and Society)
    • SA.510 (International Economics and Finance)
    • SA.550 (Africa)
    • SA.551 (The Americas)
    • SA.552 (Asia)
    • SA.553 (China)
    • SA.554 (Europe and Eurasia)
    • SA.555 (The Middle East)
    • SA.556 (The United States)
    • SA.620 (Global Policy)
    • SA.630/​635 (Global Risk)
    • SA.670 (Strategy, Cybersecurity and Intelligence)
    • SA.685 (Sustainable Energy -​ Online)
  • Course Search
    • /​course-​search/​api/​
  • Catalogue Contents
  • Catalogue Archives
  • Amendments
  • Home›
  • Zanvyl Krieger School of Arts and Sciences›
  • Full-time, On-campus Undergraduate and Graduate Programs (Homewood)›
  • Departments, Program Requirements, and Courses›
  • Physics and Astronomy
  • Overview
  • Programs
  • Courses

Department website: http://physics-astronomy.jhu.edu/

Johns Hopkins is the nation’s first research university. That emphasis on research continues to this day and forms the backbone of the undergraduate and graduate programs in the Department of Physics and Astronomy. The department’s research program is focused into four areas of excellence:

  • Astrophysics
  • Condensed Matter Physics
  • Elementary Particle Physics
  • Plasma Physics

For graduate students interested in these fields, the department offers world-class research opportunities in a friendly and supportive setting. For undergraduates, JHU offers exposure to cutting-edge research combined with a level of personal attention that is typically found only in liberal arts colleges. Nearly all physics majors at JHU work on research projects and many begin as freshmen or sophomores.

All research builds upon an established body of knowledge. To be effective researchers, teachers, or professionals, both undergraduate and graduate students must acquire a core knowledge of physics. Our undergraduate and graduate courses are designed to cover the core subjects at the appropriate levels, leading to advanced courses on a variety of specialized topics. As a consequence, students having different backgrounds or different ultimate objectives can select those parts that are most appropriate for them. The selections are made under the guidance of a faculty advisor. The advisor aids the student in making the most efficient use of their time and ensures that their program contains a reasonable balance among classroom and laboratory, mathematics, seminars, and introduction to research.

Donald E. Kerr Memorial Prize

In recognition of Dr. Kerr’s work in microwave physics, the department awards the Donald E. Kerr Memorial Prize each year to the most outstanding undergraduate major graduating in physics.

Facilities

The Department of Physics and Astronomy’s first facility was Rowland’s measuring engine for determining the solar spectrum in the 1880s. Ever since that time the Department has maintained a long and continuous history in instrumentation. In recent decades this has extended to instrumentation for space missions. The Department maintains a Class-1000 clean room for microfabrication and nanofabrication, a high bay lab, professional and student machine shops, and supports a world-renowned Instrument Development Group (IDG) with six full-time engineers and three full-time machinists.

Among the diverse techniques used for studying condensed matter physics are magnetometry/susceptometry, specific heat and transport measurements, atomic force and magnetic force microscopy, X-ray and electron diffraction, terahertz spectroscopy, and neutron scattering at the nearby NIST Center for Neutron Research and at the Spallation Neutron Source, ORNL. A variety of cryostats, He3 refrigerators, and He3-He4 dilution refrigerators together with high temperature ovens, electromagnets, and superconducting magnets allow measurements to be made from 0.05 K to 1100 K and in magnetic fields up to 14 Tesla. Apparatus for the preparation of samples includes two image furnaces for floating zone growth, single-crystal growth vacuum furnaces, box and tube furnaces, arc furnaces, several high vacuum and ultra-high vacuum chambers for thin film fabrication using evaporation, MBE, pulsed laser deposition, sputtering, and focused ion beam (FIB) milling. Also available on campus are cutting-edge transmission electron microscopes and scanning electron microscopes.

In astrophysics, research groups have state-of-the-art laboratories for testing cryogenic transition-edge bolometer detectors with SQUID read-out electronics, and closed-cycle helium crogenics. Recent instrumentation advances include the design and manufacture of large free-standing polarization grids and novel high-bandwidth smooth-wall feed horns. Current activities include development of microwave and millimeter-wave instruments for far-infrared and microwave astronomy and cosmology.

The research groups in the department have a wide range of state-of-the-art computer facilities including high performance clusters with over a thousand processors and the largest database at a university—over a petabyte. All undergraduate majors and graduate students have access to high performance workstations.

Financial Aid

Graduate students in good standing are normally supported by a combination of fellowships, research assistantships and teaching assistantships. The financial package covers full tuition, individual health insurance, and an academic year salary commensurate with that of other leading research institutions. Teaching assistantship is a common mode of financial support; experience in teaching is a valuable part of the Ph.D. program. A teaching assistantship supports the student during the academic year and is supplemented by a research assistantship during the summer. The assistant is expected to help in the teaching of the general physics course and other introductory and major courses. The typical teaching duties include leading a problem-solving section or laboratory exercises and homework grading. Research assistantships are based on the availability of funding to the research advisor and are arranged directly with them. Research assistantships provide an opportunity for deep engagement in ongoing experimental or theoretical research. In addition, the department and the University offer several fellowships on a competitive basis, some covering travel, supplies or research expenses and some covering a semester’s or a year’s worth of the entire financial package. Some students are supported by external fellowships, such as the pre-doctoral fellowship of the National Science Foundation.

All fellows and teaching and research assistants in the Department of Physics and Astronomy register as full-time students and thus fulfill their residence requirements while holding appointments. Loans and work-study arrangements are available from the Office of Financial Aid.

Graduate Programs

Graduate study in physics and astronomy at JHU is intended primarily to prepare Ph.D. graduates for careers in teaching and research in physics and astronomy, or in applications such as biophysics, space physics, and industrial research. Entering students may elect to work toward a Ph.D. in physics or a Ph.D. in astronomy and astrophysics. The two programs are similar in structure but have somewhat different course requirements (see the programs tab). A wide range of research projects—both theoretical and experimental—are available for graduate students in Astrophysics, Condensed Matter Physics, Particle Physics, and Plasma Spectroscopy.

Programs

  • Astronomy and Astrophysics, PhD
  • Physics, Bachelor of Arts
  • Physics, Bachelor of Science
  • Physics, Bachelor of Science/Master of Science
  • Physics, Minor
  • Physics, PhD

For current course information and registration go to https://sis.jhu.edu/classes/

Courses

On This Page
    • Cross Listed Courses
      • Applied Mathematics & Statistics
      • Comparative Thought and Literature
      • First Year Seminars
      • Interdepartmental
      • Philosophy
AS.171.101.  General Physics: Physical Science Major I.  4 Credits.  

First semester of a two-semester sequence in calculus-based general physics. In this term, the topics covered include the basic principles of classical mechanics and fluids as well as an introduction to wave motion. Midterm exams for every section are given during the 8 AM section time! Accordingly, students registering for sections at times other than 8 AM must retain availability for 8 AM sections as needed. Recommended Co-requisite: AS.110.108 or AS.110.113 AND AS.173.111

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.102.  General Physics: Physical Science Major II.  4 Credits.  

Second semester of two-semester sequence in calculus-based general physics. In this term, the topics covered include wave motion, electricity and magnetism, optics, and modern physics. Recommended Corequisites: (AS.173.112) AND Calculus (AS.110.107 or AS.110.109 or AS.110.113).

Prerequisite(s): Prerequisites: A grade of C- or better in either Physics I or the first semester of Engineering Mechanics AS.171.101 OR AS.171.103 OR AS.171.105 OR AS.171.107 OR EN.530.123

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.103.  General Physics I for Biological Science Majors.  4 Credits.  

First-semester of two-semester sequence in calculus-based general physics, tailored to students majoring in one of the biological sciences. In this term, the topics covered include the basic principles of classical mechanics and fluids as well as an introduction to wave motion. Recommended Corequisites: (AS.173.111) AND (AS.110.106 or AS.110.108 or AS.110.113).Midterm exams are given at 8am Tuesdays, so students must leave their schedules open at this time in order to be able to take these exams

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.104.  General Physics/Biology Majors II.  4 Credits.  

Second semester of a two-semester sequence designed to present a standard calculus-based physics preparation tailored to students majoring in one of the biological sciences. Topics in electricity & magnetism, optics, and modern physics will be covered in this semester. Midterm exams for every section are given during the 8 AM section time!Accordingly, students registering for sections at times other than 8 AM must retain availability for 8 AM sections as needed. Recommended Course Background: C- or better in AS.171.101 or AS.171.103 or AS.171.105 or AS.171.107 or EN.530.123; Corequisites: AS.110.109, AS173.112.

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.105.  Classical Mechanics I.  4 Credits.  

An in-depth introduction to classical mechanics intended for physics majors/minors and other students with a strong interest in physics. This course treats fewer topics than AS.171.101 and AS.171.103 but with greater mathematical sophistication. It is particularly recommended for students who intend to take AS.171.201 or AS.171.310. Recommended Co-requisites: AS.173.115 and AS.110.108

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.106.  Electricity and Magnetism I.  4 Credits.  

Classical electricity and magnetism with fewer topics than 171.102-104, but with greater mathematical sophistication. Particularly recommended for students who plan to take AS.171.201-AS.171.204. Recommended Course Background: C- or better in AS.171.105; Corequisite: AS.173.116, AS.110.109

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.107.  General Physics for Physical Sciences Majors (AL).  4 Credits.  

This two-semester sequence in calculus-based general physics is identical in subject matter to AS.171.101-AS.171.102, covering mechanics, heat, sound, electricity and magnetism, optics, and modern physics, but differs in instructional format. Rather than being presented via lectures and discussion sections, it is instead taught in an "active learning" style with most class time given to small group problem-solving guided by instructors. Midterm exams for every section are given during the 8 AM section time! Accordingly, students registering for sections at times other than 8 AM must retain availability for 8 AM sections as needed. Recommended Corequisites: (AS.173.111) AND (AS.110.106 or AS.110.108 or AS.110.113)

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.108.  General Physics for Physical Science Majors (AL).  4 Credits.  

Second semester of a two-semester sequence in calculus-based general physics identical in subject matter to AS.171.101-AS.171.102, covering mechanics, heat, sound, electricity and magnetism, optics, and modern physics, but differs in instructional format. Rather than being presented via lectures and discussion sections, it is instead taught in an "active learning" style with most class time given to small group problem-solving guided by instructors. Recommended Course Background: A grade of C- or better in either Physics I or the first semester of Engineering Mechanics (AS.171.101 OR AS.171.103 OR AS.171.105 OR AS.171.107 OR EN.530.123)

Prerequisite(s): Can be taken concurrently or as a prerequisite: (AS.110.107 OR AS.110.109 OR AS.110.211 OR AS.110.113)

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.113.  Subatomic World.  3 Credits.  

Introduction to the concepts of physics of the subatomic world: symmetries, relativity, quanta, neutrinos, particles and fields. The course traces the history of our description of the physical world from the Greeks through Faraday and Maxwell to quantum mechanics in the early 20th century and on through nuclear physics and particle physics. The emphasis is on the ideas of modern physics, not on the mathematics. Intended for non-science majors.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.114.  Powering the world: the science of energy.  3 Credits.  

We all know that the energy we use on a daily basis can come from a variety of sources, but a discussion of the merits and drawbacks to those sources more often leads to political argument than fact-based scientific dialogue. This course, meant for science and non-science students alike, explores the principles behind how energy from fossil fuels, solar, wind, nuclear, and other resources is produced, how efficiently the energy can be harnessed, and what effect the process has and will have on our environment and society today and in the future. Students will apply this fundamental understanding to compare and understand how each source could be used in real world scenarios. Ultimately, the course is intended to help students use a scientific perspective to shape their opinions when faced with these controversial topics.

Distribution Area: Natural Sciences

AS.171.115.  Spacetime and Quanta.  3 Credits.  

This course offers a broad overview of the fundamental ideas of modern physics: mechanics, space, time, relativity, quantum mechanics, and quantum field theory, up to general relativity and the Standard Model of particle physics. The course will be descriptive but equation-based, including explicit details about the foundational equations of the theories discussed. The goal will be to understand the meaning of those equations and the concepts they represent, rather than to gain facility in manipulating and solving the equations. This course is aimed at non-physics majors

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.118.  Stars and the Universe: Cosmic Evolution.  3 Credits.  

This course looks at the evolution of the universe from its origin in a cosmic explosion to emergence of life on Earth and possibly other planets throughout the universe. Topics include big-bang cosmology; origin and evolution of galaxies, stars, planets, life, and intelligence; black holes; quasars; and relativity theory. The material is largely descriptive, based on insights from physics, astronomy, geology, chemistry, biology, and anthropology.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.135.  Exploring the Universe with Space Telescopes.  1 Credit.  

Through a mix of lectures and hands-on activities, you will learn how astronomers study objects in space using different types of light, observatories, and instrumental techniques. You will also hear from active researchers about the big, open questions in astronomy and how we use space telescopes such as Hubble and Webb to answer those questions. Building on this knowledge, you will work with a small group to design your own space telescope and present that design to your peers. No prior knowledge of astronomy, physics, or mathematics is assumed.

AS Foundational Abilities: Science and Data (FA2)

AS.171.201.  Special Relativity/Waves.  4 Credits.  

Course continues introductory physics sequence (begins with AS.171.105-AS.171.106). Special theory of relativity, forced and damped oscillators, Fourier analysis, wave equation, reflection and transmission, diffraction and interference, dispersion. Meets with AS.171.207.

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.202.  Modern Physics.  4 Credits.  

Course completes four-semester introductory sequence that includes AS.171.105-AS.171.106 and AS.171.201. Planck’s hypothesis, de Broglie waves, Bohr atom, Schrodinger equation in one dimension, hydrogen atom, Pauli exclusion principle, conductors and semiconductors, nuclear physics, particle physics.

Distribution Area: Natural Sciences

AS.171.204.  Classical Mechanics II.  4 Credits.  

Principles of Newtonian and Lagrangian mechanics; application to central-force motion, rigid body motion, and the theory of small oscillations. Recommended Course Background: AS.110.108 and AS.110.109, AS.110.202, AS.171.201, or AS.171.309. AS.110.201 or equivalent is strongly recommended.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.205.  Introduction to Practical Data Science: Beautiful Data.  3 Credits.  

The class will provide an overview of data science, with an introduction to basic statistical principles, databases, fundamentals of algorithms and data structures, followed by practical problems in data analytics. Recommend Course Background: Familiarity with principles of computing.

Distribution Area: Natural Sciences, Quantitative and Mathematical Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.301.  Electromagnetic Theory II.  4 Credits.  

Static electric and magnetic fields in free space and matter; boundary value problems; electromagnetic induction; Maxwell’s equations; and an introduction to electrodynamics.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.303.  Quantum Mechanics I.  4 Credits.  

Fundamental aspects of quantum mechanics. Uncertainty relations, Schrodinger equation in one and three dimensions, tunneling, harmonic oscillator, angular momentum, hydrogen atom, spin, Pauli principle, perturbation theory (time-independent and time-dependent), transition probabilities and selection rules, atomic structure, scattering theory. Recommended Course Background: AS.110.302 or AS.110.306.

Prerequisite(s): (AS.171.204 ) AND ( AS.110.201 OR AS.110.212 ) AND ( AS.110.202 OR AS.110.211 )

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.304.  Quantum Mechanics II.  4 Credits.  

Fundamental aspects of quantum mechanics. Uncertainty relations, Schrodinger equation in one and three dimensions, tunneling, harmonic oscillator, angular momentum, hydrogen atom, spin, Pauli principle, perturbation theory, transition probabilities and selection rules, atomic structure, scattering theory. Recommended Course Background: AS.171.303, AS.171.202, AS.171.204, AS.110.202.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.310.  Biological Physics.  4 Credits.  

Introduces topics of classical statistical mechanics. Additional topics include low-Reynolds number hydrodynamics and E&M of ionic solutions, via biologically relevant examples.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.312.  Statistical Physics/Thermodynamics.  4 Credits.  

Undergraduate course that develops the laws and general theorems of thermodynamics from a statistical framework.

Prerequisite(s): Calculus II ( AS.110.107 or AS.110.109 or AS.110.113 ). Linear Algebra (AS.110.201 or AS.110.212) and Calculus III (AS.110.202 or AS.110.211)

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.313.  Introduction to Stellar Physics.  3 Credits.  

Survey of stellar astrophysics. Topics include stellar atmospheres, stellar interiors, nucleosynthesis, stellar evolution, supernovae, white dwarfs, neutron stars, pulsars, black holes, binary stars, accretion disks, protostars, and extrasolar planetary systems. Recommended Course Background: AS.110.108-AS.110.109, AS.171.202

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.314.  Introduction to Galaxies and Active Galactic Nuclei.  3 Credits.  

This course will introduce student to the physics of galaxies and their constituents: stars, gas, dust, dark matter and a supermassive black hole in the central regions.Recommended Course Background: AS.110.108-AS.110.109, AS.171.202

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.321.  Introduction to Space, Science, and Technology.  3 Credits.  

Topics include space astronomy, remote observing of the earth, space physics, planetary exploration, human space flight, space environment, orbits, propulsion, spacecraft design, attitude control and communication. Crosslisted by Departments of Earth and Planetary Sciences, Materials Science and Engineering and Mechanical Engineering. Recommended Course Background: AS.171.101-AS.171.102 or similar; AS.110.108-AS.110.109.

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2), Projects and Methods (FA6)

AS.171.324.  Learn to Think Statistically.  3 Credits.  

We live in a data-rich world where the flux of information increases exponentially. We will learn how to think statistically and see patterns and structure in many systems around us: news reports, images, cities, social networks, etc. We will learn how to use this knowledge to analyze data, make decisions and predictions. We will explore correlations, patterns, entropy, fractals. This course will allow students to better understand the complex world we live in. The course will occasionally involve some coding. Junior, senior and graduate students only. More at https://bit.ly/3iJ90ps

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.402.  Applied Quantum Information.  3 Credits.  

This course will provide a basic introduction to quantum computing and quantum algorithms. It will cover celebrated quantum algorithms that are of interest in the long term in addition to having a particular focus on near-term quantum algorithms for specific applications (e.g., material simulation and approximate optimization) that can be readily studied on currently available hardware. Lastly, we will discuss critical techniques for managing noise in quantum systems (e.g., quantum error correction). Course attendees will also receive hands-on experience in near-term quantum algorithm implementation on the IBM Quantum Experience (IBM QE), a publicly available quantum computing platform.Recommended Background : Calculus, Python (Basic), Linear Algebra, Basic Quantum Mechanics

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.405.  Condensed Matter Physics.  3 Credits.  

Undergraduate course covering basic concepts of condensed matter physics: crystal structure, diffraction and reciprocal lattices, electronic and optical properties, band structure, phonons, superconductivity and magnetism. Co-listed with AS.171.621Recommended Course Background: AS.171.304, AS.110.201-AS.110.202.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.406.  Condensed Matter Physics.  3 Credits.  

Classical physics approaches to condensed matter. Topics include broken symmetries, phase transitions, elasticity, topological defects, and (as time permits) dynamics, as applied to systems including crystals, liquid crystals, ferromagnets, superfluids, and superconductors.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.408.  Nuclear and Particle Physics.  3 Credits.  

Basic properties of nuclei, masses, spins, parity. Nuclear scattering, interaction with electromagnetic radiation, radioactivity, Pions, muons, and elementary particles, including resonances. Recommended Course Background: AS.171.303

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.410.  Physical Cosmology.  3 Credits.  

This course provides an overview of modern physical cosmology. Topics covered include: the contents, shape, and history of the universe; the big bang theory; dark matter; dark energy; the cosmic microwave background; Hubble's law; the Friedmann equation; and inflation. Recommended Course Background: (AS.171.101-AS.171.102), or (AS.171.103-AS.171.104), or (AS.171.105-AS.171.106), or (AS.171.107-AS.171.108), or equivalent.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.416.  Numerical Methods for Physicists.  4 Credits.  

Topics in applied mathematics used by physicists, covering numerical methods: linear problems, numerical integration, pseudo-random numbers, finding roots of nonlinear equations, function minimization, eigenvalue problems, fast Fourier transforms, solution of both ordinary and partial differential equations.

Distribution Area: Natural Sciences, Quantitative and Mathematical Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.418.  Introduction to Topics in Contemporary Physics.  3 Credits.  

Course is intended to give broad perspective on many aspects of modern physics: Astrophysics, Condensed Matter Physics, Particle Physics, Biological Physics.

Prerequisite(s): AS.171.303 AND AS.171.301 AND AS.171.312

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.425.  Group Theory in Physics.  3 Credits.  

Introduction to finite and Lie groups, representations and applications to quantum mechanics, condensed matter physics, and other fields of physics; selected topics from differential geometry and algebraic topology.Recommended Prerequisite: AS.171.304

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.430.  Introduction to Quantum Field Theory.  3 Credits.  

Quantum Field Theory marries the principles of special relativity with quantum mechanics and provides a remarkably consistent description of a wide variety of phenomena, ranging from the theory of elementary particles to processes in condensed matter physics. It is an essential element in the toolkit of every physicist. In this course, we provide an introduction to this vast topic and aim to provide an intuitive understanding of this field. We will start by learning how to think about quantum mechanics in a manner consistent with special relativity (the Klein Gordon and Dirac equations), learn how to estimate relativistic quantum processes (Feynman diagrams), analyze nonsensical infinities that arise in these theories (Renormalization) and conclude with an overview of the Standard Model of Particle Physics (QCD and Electroweak theory). The course is aimed at introducing the student to how physicists think about these issues and it is a stepping stone to graduate study in this topic.

Prerequisite(s): AS.171.304

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.432.  Atomic and Optical Physics I.  3 Credits.  

The two-state quantum system; atomic structure; atoms in electric and magnetic fields; single-photon transitions; two-photon transitions and coherence. Recommended Course Background: AS.171.303, AS.171.304.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.449.  Astrophysical Plasmas.  3 Credits.  

This course is for both graduate students and undergraduate students. There is no prerequisite although reading for introductory texts will be supplied where useful. Postdocs are also welcome to attend. Topics that will be discussed include: 1.Gravitational Wave Astronomy (related to cosmic plasmas),2. Ultra-High Energy Cosmic Rays,3. Black Hole Electrodynamics, 4.the Intergalactic, Interstellar and Intra-Cluster Medium, 5.Pulsars, 6.Magnetars, 7.Stellar and Galactic Dynamos,8.Solar Flares and CMEs, 9.Gamma Ray Bursts, 10.Supernovae and their Remnants, 11. Radio Sources and Jets and, 12. the universal cosmic plasma from earliest times13.Finally the detailed dusty plasmas around protostellar and protoplanetary disks including debris components of comets, asteroids planetesimals and interstellar intruders. We will spend roughly one week on each topic. In class, we will combine the lectures with reading interesting new papers from the current literature and it is expected that students will be sufficiently fluent in this field by the end of the semester to critically discuss and analyze such papers as experts.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.171.501.  Independent Research- Undergraduate.  3 Credits.  

Students may register for independent research with a faculty member in the Department of Physics and Astronomy. A research plan should be sent to the Director of Undergraduate Study before the add/drop date that includes project details, the number of hours of effort each week and the number of credits. This course may not be used for one of the two electives required for a BA, but one semester of research may be used as one of four focused electives in a BS program.

Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration, Online Forms.

AS Foundational Abilities: Science and Data (FA2), Projects and Methods (FA6)

AS.171.502.  Undergraduate Independent Research.  1 - 3 Credits.  

Research done in senior year in conjunction with experimental equipment of intermediate laboratory or as special project in research group. Credit for independent study given to junior and senior students who act as tutors.

Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration, Online Forms.

AS Foundational Abilities: Science and Data (FA2), Projects and Methods (FA6)

AS.171.597.  Independent Research.  3 Credits.  

Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration, Online Forms.

AS Foundational Abilities: Science and Data (FA2), Projects and Methods (FA6)

AS.171.603.  Electromagnetic Theory.  3 Credits.  

Classical field theory, relativistic dynamics, Maxwell's equations with static and dynamic applications, boundary-value problems, radiation and propagation of electromagnetic waves, advanced topics in electrodynamics in media and plasmas

AS.171.605.  Quantum Mechanics.  4 Credits.  

Review of wave mechanics and the Schrodinger equation, Hilbert space, harmonic oscillator, the WKB approximation, central forces and angular momentum, scattering, electron spin, density matrix, perturbation theory (time-independent and time-dependent), quantized radiation field, absorption and emission of radiation, identical particles, second quantization, Dirac equation.

AS.171.606.  Quantum Mechanics.  4 Credits.  

Review of wave mechanics and the Schrodinger equation, Hilbert space, harmonic oscillator, the WKB approximation, central forces and angular momentum, scattering, electron spin, density matrix, perturbation theory (time -independent and time - dependent), quantized radiation field, absorption and emission of radiation, identical particles, second quantization, Dirac equation. Recommended Course Background: AS.171.303 and AS.171.304

AS.171.610.  Numerical Methods for Physicists.  4 Credits.  

Topics in applied mathematics used by physicists, covering numerical methods: linear problems, numerical integration, pseudo-random numbers, finding roots of nonlinear equations, function minimization, eigenvalue problems, fast Fourier transforms, solution of both ordinary and partial differential equations. Undergraduate students may register online for this course and will be assigned 3 credits during the add/drop period.

AS.171.611.  Stellar Structure and Evolution.  3 Credits.  

Basic physics of stellar structure and evolution will be discussed with emphasis on current research.

AS.171.612.  Interstellar Medium and Astrophysical Fluid Dynamics.  3 Credits.  
AS.171.613.  Radiative Astrophysics.  3 Credits.  

A one-term survey of the processes that generate radiation of astrophysical importance. Topics include radiative transfer, the theory of radiation fields, polarization and Stokes parameters, radiation from accelerating charges, bremsstrahlung, synchrotron radiation, thermal dust emission, Compton scattering, properties of plasmas, atomic and molecular quantum transitions, and applications to astrophysical observations.

AS.171.618.  Observational Astronomy.  3 Credits.  

How do we observe the Universe at each wavelength and what do we see? This course will present the knowledge required for astronomical observations across the entire spectrum. For each wavelength range (gamma rays, X-rays, UV, visible, IR, radio) we will discuss the typeof detector used, the range of possible observations and current open questions. We will also discuss the dominant astronomical and terrestrial sources across the spectrum, and study the differences between ground- and space-based observations.

AS.171.620.  Soft Matter Physics.  3 Credits.  

This course is aimed at both graduate students and upper level undergraduate students. It will cover a range of topics going from the traditional areas of soft matter (polymers, liquid crystals, membranes) to newer areas at the intersection with biological physics and condensed matter. In class, we will combine lectures with reading and discussing papers from the current literature. In the second part of the course, students will at turn lead the paper discussions.

Distribution Area: Natural Sciences

AS.171.621.  Condensed Matter Physics.  3 Credits.  

This sequence is intended for graduate students in physics and related fields. Topics include: metals and insulators, diffraction and crystallography, phonons, electrons in a periodic potential, transport. Co-listed with AS.171.405

AS.171.622.  Condensed Matter Physics.  3 Credits.  

This sequence is intended for graduate students in physics and related fields. Classical physics approaches to condensed matter. Topics include broken symmetries, phase transitions, elasticity, topological defects, and (as time permits) dynamics, as applied to systems including crystals, liquid crystals, ferromagnets, superfluids, and superconductors.

AS.171.625.  Experimental Particle Physics.  3 Credits.  

For graduate students interested in experimental particle physics, or theory students, or students from other specialties. Subjects covered: experimental techniques, including particle beams, targets, electronics, and various particle detectors; and a broad description of high energy physics problems. Undergraduate students may register online for this course and will be assigned 3 credits during the add/drop period.

AS.171.627.  Astrophysical Dynamics.  3 Credits.  

This is a graduate course that covers the fundamentals of galaxy formation, galactic structure and stellar dynamics, and includes topics in current research.

Distribution Area: Natural Sciences

AS.171.632.  Atomic and Optical Physics I.  3 Credits.  

The two-state quantum system; atomic structure; atoms in electric and magnetic fields; single-photon transitions; two-photon transitions and coherence.

AS.171.639.  Group Theory in Physics.  3 Credits.  

Introduction to finite and Lie groups, representations and applications to quantum mechanics, condensed matter physics, and other fields of physics; selected topics from differential geometry and algebraic topology.

Distribution Area: Natural Sciences

AS.171.644.  Exoplanets and Planet Formation.  3 Credits.  

A graduate-level introduction to the properties of the solar system, the known exoplanet systems, and the astrophysics of planet formation and evolution. Topics also include the fundamentals of star formation, protoplanetary disk structure and evolution, exoplanet detection techniques, and the status of the search for other Earths in the Galaxy. Upper-level undergraduates may enroll with the permission of the instructor.

AS.171.646.  General Relativity.  3 Credits.  

An introduction to the physics of general relativity. Principal topics are: physics in curved spacetimes; the Equivalence Principle; the Einstein Field Equations; the post-Newtonian approximation and Solar System tests; the Schwarzschild and Kerr solutions of the Field Equations and properties of black holes; Friedmann solutions and cosmology; and gravitational wave propagation and generation.

Distribution Area: Natural Sciences

AS.171.648.  Physics of Cell Biology: From Mechanics to Information.  3 Credits.  

Cells are actively-driven soft materials – but also efficient sensors and information processors. This course will cover the physics of those cellular functions, from the mechanics of DNA to the sensing of chemical signals. Questions answered include: How does polymer physics limit how quickly chromosomes move? Why do cells use long, thin flagella to swim? What limits the accuracy of a cell’s chemotaxis?Some experience with partial differential equations required. No biology knowledge beyond the high school level necessary. Some problem sets will require minimal programming.

Distribution Area: Natural Sciences

AS.171.649.  Astrophysical Plasmas.  3 Credits.  

This course is for both graduate students and undergraduate students. There is no prerequisite although reading for introductory texts will be supplied where useful. Postdocs are also welcome to attend. Topics that will be discussed include: 1.Gravitational Wave Astronomy (related to cosmic plasmas),2. Ultra-High Energy Cosmic Rays,3. Black Hole Electrodynamics, 4.the Intergalactic, Interstellar and Intra-Cluster Medium, 5.Pulsars, 6.Magnetars, 7.Stellar and Galactic Dynamos,8.Solar Flares and CMEs, 9.Gamma Ray Bursts, 10.Supernovae and their Remnants, 11. Radio Sources and Jets and, 12. the universal cosmic plasma from earliest times13.Finally the detailed dusty plasmas around protostellar and protoplanetary disks including debris components of comets, asteroids planetesimals and interstellar intruders. We will spend roughly one week on each topic. In class, we will combine the lectures with reading interesting new papers from the current literature and it is expected that students will be sufficiently fluent in this field by the end of the semester to critically discuss and analyze such papers as experts.

Distribution Area: Natural Sciences

AS.171.701.  Quantum Field Theory.  3 Credits.  

Introduction to relativistic quantum mechanics and quantum field theory. Canonical quantization; scalar, spinor, and vector fields; scattering theory; renormalization; functional integration; spontaneous symmetry breaking; Standard Model of particle physics.

AS.171.702.  Quantum Field Theory II.  3 Credits.  

Introduction to relativistic quantum mechanics and quantum field theory. Recommended Course Background: AS.171.605-AS.171.606 or equivalent.

AS.171.703.  Advanced Statistical Mechanics.  3 Credits.  

Brief review of basic statistical mechanics and thermodynamics. Then hydrodynamic theory is derived from statistical mechanics and classical treatments of phase transitions, including Ginzburg-Landau theory.

AS.171.704.  Phase Transitions and Critical Phenomena.  3 Credits.  

Course covers phase transitions and critical phenomena. Building on the ideas of spontaneous symmetry breaking and scale invariance at a critical point we develop Landau’s theory of phase transitions and the apparatus of renormalization group using both analytic and numerical techniques for studying interacting systems.

AS.171.708.  Gravitational Waves.  3 Credits.  

In September 2015, one hundred years after Einstein’s prediction of the existence of gravitational waves, the LIGO/Virgo collaboration detected the gravitational radiation produced by the merger of two black holes, marking the beginning of a new era in astronomy. This course will review the theory of gravitational waves, the main astrophysical and cosmological sources of gravitational radiation, and the modeling of these sources through numerical and analytical techniques. We will discuss how present and future gravitational wave detections on Earth and in space can be used to study the astrophysics of compact objects (such as black holes and neutron stars) and to test Einstein’s theory of general relativity.

Distribution Area: Natural Sciences

AS.171.732.  Elementary Particle Physics.  3 Credits.  

Description TBA

AS.171.749.  Machine Learning for Scientists.  3 Credits.  

Artificial Intelligence is penetrating the world at many levels. Neural networks have changed the ways we interact with data and think about statistics. For scientists, it is important to understand the fundamental concepts behind these systems, why they work, what are their potential and limitations. This course will provide an introduction to the subject, including aspects of statistics, information theory, optimization, and neural network architectures. We will alternate between theory and applications in python. More at https://bit.ly/3LEAg7D

Distribution Area: Natural Sciences

AS.171.750.  Cosmology.  3 Credits.  

Review of special relativity and an introduction to general relativity, Robertson-Walker metric, and Friedmann equation and solutions. Key transitions in the thermal evolution of the universe, including big bang nucleosynthesis, recombination, and reionization. The early universe (inflation), dark energy, dark matter, and the cosmic microwave background. Development of density perturbations, galaxy formation, and large-scale structure.

AS.171.752.  Black Hole Astrophysics.  3 Credits.  

Black holes are the central engines for a wide variety of astrophysical objects: Galactic X-ray sources, active galactic nuclei, gamma-ray bursts, stellar tidal disruptions, and black hole mergers. Although the mass distribution of astrophysical black holes spans ten orders of magnitude and their circumstances can vary tremendously, the physical processes relevant to them are often closely related. The class will begin with an overview of astrophysical black hole phenomenology and then review the most important physical mechanisms responsible for their observed properties: relativistic orbits for both matter and photons; accretion dynamics and radiation; relativistic jet launching, propagation, and radiation; binary black hole dynamics and gravitational wave emission; and lastly, black hole creation.

AS.171.755.  Fourier Optics and Interferometry in Astronomy.  3 Credits.  

A course for advanced undergraduate and beginning graduate students covering the principles of optics and image formation using Fourier Transforms, and a discussion of interferometry and other applications both in radio and optical astronomy.

AS.171.762.  Advanced Condensed Matter.  3 Credits.  

This course is designed for graduate students interested in learning the language, techniques, and problematic of modern quantum many-body theory as applied to condensed matter physics.

AS.171.764.  Experimental Techniques in Condensed Matter Physics.  3 Credits.  

This course will be a survey of modern techniques in experimental condensed matter physics and is intended for graduate students interested in this area, but others interested in this topic (especially condensed matter the- ory students) are encouraged to enroll. Topics include low temperature techniques, transport, the SQUID and other magnetic probes, digital and analog signal processing, scattering (neutron, X-ray, and light), EPR, NMR, data analysis, and Monte Carlo. Sample preparation, including crystal and film growth and lithography will also be covered.

AS.171.781.  Symmetry and anomalies in quantum systems.  3 Credits.  

This course with cover various aspects of gauge symmetries and anomaly cancelations, Anomaly matching and EFT, phases of matter, topological states, SPT phases, edge mode, discrete symmetries, aspect of quantum gravity and anomaly cancelations, QCD at low energies and chiral symmetry. A background in quantum mechanics and quantum field theory is recommended for the course.

Distribution Area: Natural Sciences

AS.171.783.  Black Hole Physics.  3 Credits.  

General Relativity predicts its own demise in the existence of singular black hole solutions. There have been mounting astrophysical evidence that black holes do exist in nature. Thus they are not just pathologies of the theory but fundamental objects in gravity that require understanding. Theoretically, they serve as "laboratories" for studies in quantum gravity; indeed, most of the research in the field aims to resolve various paradoxes and puzzles that emerge when one tries to understand physics inside or outside black holes. The goal of this course is to elucidate these paradoxes and puzzles. First, we will study the classical properties of black holes in general relativity such as horizons, causal history, singularity theorems, area theorems and black hole mining. Next, we will study semi-quantum and quantum properties such as black hole thermodynamics, Hawking radiation, black hole evaporation. We will also explore modern results and perspectives on the fundamental physics of black holes that are necessary for current research. A background in general relativity and quantum field theory is recommended for the course.

AS.171.785.  Advanced Particle Theory: Dark Matter.  3 Credits.  

The overwhelming evidence that dark matter exists and that it is not part of the fundamental theory of matter (the standard model) suggests the need for a graduate course. I will cover what is known and not known about dark matter, being specific enough to open lines of inquiry. I will cover what the rules of quantum field theory would allow it to be and how it could interact with us. I will go over possible mechanisms that explain the generation of dark matter in our universe in the first place. In addition, I will go over the ways to potentially discover (interact with) it directly.The first half or more of the course should be mostly accessible to advanced graduate students in astrophysics and high-energy particle experimentalists. The last half/third will be more field-theory oriented

Distribution Area: Natural Sciences

AS.171.801.  Independent Research - Graduates.  10 - 20 Credits.  
AS.171.802.  Independent Research-Graduate.  9 - 20 Credits.  
AS.171.803.  Independent Research-Graduate.  9 - 15 Credits.  

Distribution Area: Natural Sciences

AS.171.805.  First Year Research - Graduates.  6 - 15 Credits.  

Independent Research

AS.171.807.  Second Year Research - Graduates.  6 - 15 Credits.  

Independent Research

AS.172.203.  Contemporary Physics Seminar.  1 Credit.  

This seminar exposes physics majors to a broad variety of contemporary experimental and theoretical issues in the field. Students read and discuss reviews from the current literature, and are expected to make an oral or written presentation. Recommended Course Background: AS.171.101-AS.171.102, AS.171.103-AS.171.104, AS.171.105-AS.171.106 or AS.171.107-AS.171.108.

Distribution Area: Natural Sciences

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2)

Writing Intensive

AS.172.633.  Language Of Astrophysics.  1 Credit.  

Survey of the basic concepts, ideas, and areas of research in astrophysics, discussing general astrophysical topics while highlighting specialized terms often used compared to physics.

AS.173.111.  General Physics Laboratory I.  1 Credit.  

Experiments performed in the lab provide further illustration of the principles discussed in General Physics I. Students are required to take this course concurrently with General Physics I (AS.171.101 OR AS.171.103 OR AS.171.105 OR AS.171.107) unless they already have received credit for one of the mentioned courses. Note: First and second terms must be taken in sequence.

Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.173.112.  General Physics Laboratory II.  1 Credit.  

Experiments are chosen from both physical and biological sciences and are designed to give students background in experimental techniques as well as to reinforce physical principles. Recommended Course Background: AS.173.111

Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.;The following courses can be taken concurrently or as a prerequisite: AS171.102 OR AS.171.104 OR AS.171.106 OR AS.171.108 OR EN.530.123

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.173.115.  Classical Mechanics Laboratory.  1 Credit.  

Experiments chosen to complement the lecture course Classical Mechanics I, II AS.171.105-AS.171.106 and introduce students to experimental techniques and statistical analysis. Corequisite: AS.171.105.

Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.

Distribution Area: Natural Sciences

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2)

Writing Intensive

AS.173.116.  Electricity and Magnetism Laboratory.  1 Credit.  

Experiments chosen to complement Electricity and Magnetism AS.171.106 and introduce students to experimental techniques and statistical analysis.

Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.

Distribution Area: Natural Sciences

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2)

AS.173.308.  Advanced Physics Laboratory.  3 Credits.  

A broad exposure to modern laboratory procedures such as holography, chaos, and atomic, molecular, and particle physics.

Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.

Distribution Area: Natural Sciences

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2), Projects and Methods (FA6)

Writing Intensive

Cross Listed Courses

Applied Mathematics & Statistics

EN.553.793.  Turbulence Theory.  3 Credits.  

An advanced introduction to turbulence theory for graduate students in the physical sciences, engineering and mathematics. Both intuitive understanding and exact analysis of the fluid equations will be stressed. Previous familiarity with fluid mechanics is not required, although it could be helpful.

Comparative Thought and Literature

AS.300.307.  The Theory of Everything.  3 Credits.  

Most physicists and cosmologists still dream of a final theory for the cosmos, the one-inch mathematical formula that will explain... everything. From atoms to galaxies, from morals to daydreams. Is this possible? Can a single theory account for everything we see? Some physicists, such as Don Lincoln and Steven Weinberg believe so. Others, such as Lisa Randall and Carlo Rovelli are skeptical.In this course we will examine arguments for and against the existence of an all-encompassing theory from the point of view of philosophy and cosmology. We will read from a wide variety of sources, including popular science books, scientific articles, and classical texts in the philosophy of science. We will also trace the intellectual history of the notion of an all-encompassing theory in Western philosophy and in physics.

Distribution Area: Humanities

First Year Seminars

AS.001.105.  FYS: The Science Behind the Fiction.  3 Credits.  

In this First-Year Seminar, we will seek to answer questions including: could you forge Beskar? What would it take to make a light saber? Is "Image, enhance" really possible? What is possible today? What might be possible in the future? And, what may never be possible, as it violates the laws of nature as we know them? We will take an empiricist approach, gathering data on the needed properties via screenings and related research, and then applying physical principles to reveal feasibility.

AS.001.140.  FYS: What Everyone Should Know about How Science Works.  3 Credits.  

Science and scientists often bear the brunt of public displeasure over current events. Recent debates over CoVID (the safety and effectiveness of vaccines, masks, and isolation), climate change, and many other controversies raise questions about the reliability of scientific results and what it means to conduct research. What is and what is not scientific? How can non-scientists determine whether a scientific result is "right?" In this First-Year Seminar, we will explore what scientists do -- the practices of science -- and how they set standards of knowledge. Discussions will be organized around current pressing topics, including: What does it mean to "follow the science" or "do your own research" in the age of COVID? Will science save us from the ravages of climate change? Who or what has ultimate authority over the direction of scientific advances? When are new scientific announcements important new results and when are they just click bait hype? Who pays for science and should we care? What is meant by replication and is it bad if it doesn't happen? How does scientific publication work and what issues have arisen? Why do scientists often get bad press, and is it fair?

Distribution Area: Natural Sciences

AS.001.142.  FYS: The Physics of Democracy.  3 Credits.  

This First-Year Seminar considers what we can learn about democratic societies by thinking of them as complex physical systems. We will discuss voting and social choice theories and their relationship to renormalization and emergence; organization and segregation in complex systems: power laws, inequality, and polarization; and the dynamics of information and opinions: networks, bubbles, filters, and phase transitions.

Distribution Area: Humanities, Natural Sciences

AS.001.185.  FYS: Why We Science?.  3 Credits.  

This First-Year Seminar will explore how some important results in physics and astronomy are discovered, their transformative implications to the basic understanding of nature and their impact on the progress of society. Students will explore how simple rules obtained from the lab or in idealized settings imply the complex behaviors and dynamics observed in the natural world, and how they back-reaction on society. The seminar will explore the motivations for doing scientific research in various context, and how they relate to the application of scientific discoveries. An example of topic that will be explored is General Relativity, a subject that emerged purely from theoretical considerations by Einstein which have revolutionized our basic understanding of the physical world and have reshaped the fields of physics and astronomy. On the other hand, General Relativity is necessary for satellite timing which revolutionized communication in human society. Another example is the basic physics experiments and research that lead to the invention of the transistor and the ensuing revolution of the information age. The students will explore the value of scientific thinking and its necessity in building a more robust society that can effectively serve its citizens. We will have regular visits and talks from leading researchers throughout the Hopkins ecosphere. This will help guide the in-class discussions.

AS.001.194.  FYS: The Arrow of Time.  3 Credits.  

This First-year Seminar will study the direction of time, pointing from past to future. It will primarily be based on the physics of entropy and the Second Law of Thermodynamics, covering aspects of statistical mechanics, probability, and cosmology. But it will also touch on how time's arrow manifests itself in the macroscopic world, including questions of memory, prediction, aging, and causality.

Distribution Area: Humanities, Natural Sciences

AS.001.201.  FYS: The Four Great Cosmic Questions: Dark Matter, Dark Energy, Black Holes and the Origin of Life.  3 Credits.  

This First-Year Seminar combines current state of the art issues in Cosmology, Astrophysics and Biology around the Scientific American level. Discusses the history of thought on these issues ranging from Aristotle, Lucretius, Galileo, Newton, Einstein…to the Hubble and JWST era. For the last part of the seminar, we will consider existential issues for humanity in our Universe. Excellent books to read to start thinking about this are by Toby Ord: Precipice and Martin Rees: (1) The Future of Humanity and (2) If Science is to Save us. Our discussions and investigations will likely lead us toward many interesting and innovative paths.

Interdepartmental

AS.360.339.  Planets, Life and the Universe.  3 Credits.  

This multidisciplinary course explores the origins of life, planet formation, Earth's evolution, extrasolar planets, habitable zones, life in extreme environments, the search for life in the Universe, space missions, and planetary protection. Recommended Course Background: Three upper level (300+) courses in sciences (Biophysics, Biology, Chemistry, Physics, Astronomy, Math, or Computer Science).

Prerequisite(s): Students may not register for this class if they have already received credit for AS.020.334 OR AS.020.616 OR AS.171.333 OR AS.171.699 OR AS 270.335 OR AS.360.671

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.360.671.  Planets, Life and the Universe.  3 Credits.  

This multidisciplinary course explores the origins of life, planet formation, Earth's evolution, extrasolar planets, habitable zones, life in extreme environments, the search for life in the Universe, space missions, and planetary protection. Recommended Course Background: Three upper level (300+) courses in sciences (Biophysics, Biology, Chemistry, Physics, Astronomy, Math, or Computer Science).

Prerequisite(s): Students may not register for this class if they have already received credit for AS.020.616 OR AS.020.334 OR AS.171.333 OR AS.171.699 OR AS.270.335 OR AS.360.339.

Distribution Area: Natural Sciences

Philosophy

AS.150.465.  Topics in the Philosophy of Physics.  3 Credits.  

This course will consider some philosophical topics in the foundations of physics. Entropy and the arrow of time -- why time has a direction, whether it can be explained in terms of entropy, and what role the arrow of time plays in causation and emergence. Anthropics and indexical uncertainty -- approaches to probability, reference classes, the cosmological multiverse, Boltzmann brains, simulation and doomsday arguments. Foundations of quantum mechanics -- the measurement problem, many-worlds, probability and structure, alternative approaches.

Distribution Area: Humanities

AS Foundational Abilities: Ethics and Foundations (FA5)

Johns Hopkins University
  • Johns Hopkins University
  • Baltimore, MD
  • 410-516-8000
  • © 2019 Johns Hopkins University. All rights reserved.
  • About Us
  • Academics
  • Schools & Divisions
  • Admissions & Aid
  • Research & Faculty
  • Campus Life
Back to top

Print Options

  • Send Page to Printer

    Print this page.

  • Download Page (PDF)

    The PDF will include all information unique to this page.

  • Download PDF of the entire 2024-2025 Catalogue

    All pages in the 2024-2025 catalogue.