• Skip to Content
  • AZ Index
  • Catalogue Home
  • Johns Hopkins University Home
Johns Hopkins University
Academic Catalogue | 2024-25 Edition
Class Schedule Search
Search location
  • Catalogue Home
  • Programs
  • Courses
  • Policies & Information
  • Print Options
  • Archives
  • Amendments

Biophysics

Zanvyl Krieger School of Arts and Sciences

Catalogue Home

  • Explore our Programs
  • University-​wide Policies and Information
    • Academic Policies and Information
      • Academic Calendar
      • Academic Integrity Policies
      • Animal Care and Use Program
      • Credit Hour Policy
      • FERPA
      • PHD Specific Policies
      • Student Leave of Absence Policy
      • Student Status (Course Load)
      • Transcripts and Enrollment Verifications
    • Admission and Aid
      • Tuition, Fees, and Cost of Attendance
        • Financial Aid
    • Higher Education Act Disclosures
      • General Institutional Information
      • Health and Safety Information
      • Student Financial Assistance Information
    • Office of Institutional Equity
      • Discrimination and Harassment Policy and Procedures
      • Equal Opportunity and Title IX Notice
      • Sexual Misconduct Policy and Procedures
    • Rights, Privileges, and Responsibilities
      • Academic Grievance Policy: Students and Postdoctoral Fellows
      • New Child Accommodations for Full-​Time Graduate Students and Postdoctoral Trainees
      • Personal Relationships Policy
      • Photography and Film Rights Policy
      • Student Conduct Code
      • Student Disability Services (SDS)
      • Student Health
    • Veterans Affairs
  • Bloomberg School of Public Health
    • Academic Calendar
    • Admission
    • CEPH Requirements
    • Departments
      • Department of Biochemistry and Molecular Biology
        • Biochemistry and Molecular Biology, MHS
        • Biochemistry and Molecular Biology, ScM
        • Biochemistry and Molecular Biology, PhD
        • Non-​Degree Training
      • Department of Biostatistics
        • Biostatistics, MHS
        • Biostatistics, ScM
        • Biostatistics, PhD
      • Department of Environmental Health and Engineering
        • Environmental Health, MHS
        • Environmental Health, SCM
        • Toxicology for Human Risk Assessment, MS
        • Environmental Health, PhD
        • Non-​Degree Training
      • Department of Epidemiology
        • Epidemiology, MHS
        • Epidemiology, ScM
        • Epidemiology, PhD
        • Non-​Degree Training
      • Department of Health, Behavior and Society
        • Health Education and Health Communication, MSPH
        • Genetic Counseling, ScM
        • Health, Behavior, and Society, MHS
        • Health, Behavior and Society, PhD
        • Non-​Degree Training
      • Department of Health Policy and Management
        • Health Administration, MHA
        • Health Economics and Outcomes Research, MHS
        • Health Finance and Management, MHS
        • Health Policy, MSPH
        • Health Policy and Management, PhD
        • Health Policy and Management, DrPH (Tsinghua)
        • Non-​Degree Training
      • Department of International Health
        • Global Health Economics, MHS
        • International Health, MSPH
        • International Health, MSPH, Human Nutrition-​Dietitian
        • International Health, MA/​MSPH
        • International Health, PhD
        • Non-​Degree Training
      • Department of Mental Health
        • Mental Health, MHS
        • Mental Health, PhD
        • Non-​Degree Training
      • Department of Molecular Microbiology &​ Immunology
        • Molecular Microbiology &​ Immunology, MHS
        • Molecular Microbiology &​ Immunology, ScM
        • Molecular Microbiology &​ Immunology, PhD
        • Non-​Degree Training
      • Department of Population, Family and Reproductive Health
        • Population, Family and Reproductive Health, MHS
        • Population, Family and Reproductive Health, MHS Online
        • Population, Family and Reproductive Health, MSPH
        • Population, Family and Reproductive Health, PhD
      • Doctor of Public Health (DrPH)
      • Graduate Training Programs in Clinical Investigation
        • Graduate Training Programs in Clinical Investigation, MHS
        • Graduate Training Programs in Clinical Investigation, PhD
        • Graduate Training Programs in Clinical Investigation, ScM
      • Master of Arts in Public Health Biology
      • Master of Bioethics
      • Master of Public Health Program
        • DNP/​MPH
        • DVM/​MPH
        • JD/​MPH
        • LLM/​MPH
        • MBA/​MPH with China Europe International Business School
        • MD/​MPH
        • MPH/​MBA
        • MSW/​MPH
      • MAS-​Office
        • Master of Applied Science in Community-​Based Primary Health Care Programs in Global Health
        • Master of Applied Science in Humanitarian Health
        • Master of Applied Science in Patient Safety and Healthcare Quality
        • Master of Applied Science in Population Health Management
        • Master of Applied Science in Spatial Analysis for Public Health
      • Residency Programs
        • General Preventive Medicine Residency Program
        • Occupational and Environmental Medicine Residency
    • Certificates
      • Adolescent Health, Certificate
      • Bioethics, Certificate
      • Climate and Health, Certificate
      • Clinical Trials, Certificate
      • Community-​Based Public Health, Certificate
      • Demographic Methods, Certificate
      • Environmental and Occupational Health, Certificate
      • Epidemiology for Public Health Professionals, Certificate
      • Evaluation: International Health Programs, Certificate
      • Food Systems, the Environment &​ Public Health, Certificate
      • Gender and Health, Certificate
      • Gerontology, Certificate
      • Global Digital Health, Certificate
      • Global Health, Certificate
      • Global Health Practice, Certificate
      • Health and Human Rights, Certificate
      • Health Communication, Certificate
      • Health Disparities and Health Inequality, Certificate
      • Health Education, Certificate
      • Health Finance and Management, Certificate
      • Healthcare Epidemiology and Infection Prevention and Control, Certificate
      • Humane Sciences and Toxicology Policy, Certificate
      • Humanitarian Health, Certificate
      • Implementation Science and Research Practice, Certificate
      • Injury and Violence Prevention, Certificate
      • International Healthcare Management and Leadership, Certificate
      • Leadership for Public Health and Healthcare, Certificate
      • Lesbian, Gay, Bisexual, Transgender, and Queer (LGBTQ) Public Health, Certificate
      • Maternal and Child Health, Certificate
      • Mental Health Policy, Economics and Services, Certificate
      • Pharmacoepidemiology and Drug Safety, Certificate
      • Population and Health, Certificate
      • Population Health Management, Certificate
      • Product Stewardship for Sustainability, Certificate
      • Public Health Advocacy, Certificate
      • Public Health Economics, Certificate
      • Public Health Informatics, Certificate
      • Public Health Practice, Certificate
      • Public Health Preparedness, Certificate
      • Public Health Training Certificate for American Indian Health Professionals
      • Public Mental Health Research, Certificate
      • Quality, Patient Safety, and Outcomes Research, Certificate
      • Quantitative Methods in Public Health, Certificate
      • Rigor, Reproducibility and Responsibility in Scientific Practice, Certificate
      • Risk Sciences and Public Policy, Certificate
      • Spatial Analysis for Public Health, Certificate
      • Training Certificate in Public Health
      • Tropical Medicine, Certificate
      • Vaccine Science and Policy, Certificate
    • Policies
      • Academic
        • Academic Ethics Code
        • Compliance Line
        • Grade Appeal Policy
        • Grading System
        • Graduation Policy
        • Interdivisional Registration
        • Multi-​Term Course Policy
        • Post-​Doctoral Fellow Student Status
        • Student Grievance Policy
        • Voluntary Leave of Absence Policy
      • Research
        • Animal Research
        • Human Subjects Research
        • Worker's Compensation
  • Carey Business School
    • Admission
      • Master’s Programs
      • Certificate Programs
      • Graduate Degree Requirements
      • International Student Admission Policy
      • Verification of Credentials
      • Other Admission Policies
    • Degrees and Certificates
      • Business Administration (Flexible), MBA
      • Business Administration (Full Time), MBA
      • Business Analytics and Risk Management (Part Time), Master of Science
      • Business Analytics and Risk Management, Master of Science
      • Design Leadership, MBA/​MA Dual Degree
      • Finance (Part Time), Master of Science
      • Finance, Master of Science
      • Financial Management, Graduate Certificate
      • Financial Management, Graduate Certificate, Investments, Graduate Certificate, Applied Economics, MS
      • Health Care Management (Part Time), Master of Science
      • Health Care Management, Master of Science
      • Information Systems, Master of Science
      • Investments, Graduate Certificate
      • Leadership Development Program, Graduate Certificate
      • Marketing (Part Time), Master of Science
      • Marketing, Master of Science
      • MBA/​Applied Economics, MS Dual Degree
      • MBA/​Biotechnology, MS Dual Degree
      • MBA/​Communication, MA Dual Degree
      • MBA/​DNP Dual Degree
      • MBA/​Government, MA Dual Degree
      • MBA/​Healthcare Organizational Leadership, MSN Dual Degree
      • MBA/​JD Dual Degree
      • MBA/​MA in International Relations
      • MBA/​MD Dual Degree
      • MBA/​MPH Dual Degree
      • Real Estate and Infrastructure (Part Time), Master of Science
      • Real Estate and Infrastructure, Master of Science
      • Business, Minor
    • Policies and Resources
      • Academic Calendar
      • Academic Ethics Policy
      • Academic Progress and Standards
      • Changing Degree Program
      • Grading Policy
      • Graduation
      • Attendance Policy
      • Leave of Absence
      • Registration
      • Student Accounts
      • Transfer of Graduate Credit
      • Waiver Exams
  • Peabody Institute
    • General Information, Procedures and Regulations
      • Introduction and Nomenclature
      • Mission
      • Accreditation
      • Links
      • Honor Societies
    • Procedural Information
      • Applicability
      • Studio Assignments
      • Course Numbering
      • Large Ensemble Participation
      • Competitions
      • Recitals
      • Academic Advising
      • Inter-​Institutional Academic Arrangements
      • Study Abroad Program
      • Outside Instruction and Public Performance
    • Academic Regulations
      • Applicability
      • Academic Code of Conduct
      • Program Classification, Status, and Credit Limits
      • Sources of Credit
      • Grading System and Regulations
      • Dean's List Criteria
      • Academic Standing
      • Registration Regulations
      • Attendance and Absences
      • Interruption of Degree Work
      • Graduation Eligibility
    • Degree and Diploma Programs
      • Bachelor of Fine Arts in Dance (BFA)
      • Bachelor of Music (BM)
        • Curricula
          • Bachelor of Music in Composition
          • Bachelor of Music in Jazz Performance
          • Bachelor of Music in Music Education
            • Bachelor of Music in Music Education -​ Composition
            • Bachelor of Music in Music Education-​ Guitar
            • Bachelor of Music in Music Education -​ Jazz
            • Bachelor of Music in Music Education -​ Orchestral Instruments
            • Bachelor of Music in Music Education -​ Piano
            • Bachelor of Music in Music Education -​ Voice
          • Bachelor of Music in Music for New Media
          • Bachelor of Music in Performance
            • Bachelor of Music in Performance -​ Computer Music
            • Bachelor of Music in Performance -​ Guitar
            • Bachelor of Music in Performance -​ Harpsichord
            • Bachelor of Music in Performance -​ Historical Performance
            • Bachelor of Music in Performance -​ Orchestral Instruments
            • Bachelor of Music in Performance -​ Organ
            • Bachelor of Music in Performance -​ Piano
            • Bachelor of Music in Performance -​ Voice
          • Bachelor of Music in Recording Arts &​ Sciences
            • Bachelor of Music in Recording Arts &​ Sciences -​ Composition
            • Bachelor of Music in Recording Arts &​ Sciences -​ Computer Music
            • Bachelor of Music in Recording Arts &​ Sciences -​ Guitar
            • Bachelor of Music in Recording Arts &​ Sciences -​ Jazz
            • Bachelor of Music in Recording Arts &​ Sciences -​ Orchestral Instruments
            • Bachelor of Music in Recording Arts &​ Sciences -​ Piano
        • Minors
          • Business of Music, Minor
          • Directed Studies, Minor
          • Historical Performance, Minor
          • Historical Performance: Voice, Minor
          • Liberal Arts, Minor
          • Music Theory, Minor
          • Musicology, Minor
        • Combined Degree Programs
          • Peabody-​Homewood Double Degree Program
        • Accelerated Graduate Degrees
          • Five-​Year BM/​MM Program
          • Five-​Year BMRA/​MA Program
            • Five-​Year BM/​MA: Music for New Media Variant
      • Master of Music (MM)
        • Master of Music in Composition
        • Master of Music in Film and Game Scoring
        • Master of Music: Performance
          • Master of Music, Performance -​ Choral Conducting Specialization
          • Master of Music, Performance -​ Computer Music specialization
          • Master of Music, Performance -​ Guitar specialization
          • Master of Music, Performance -​ Harpsichord specialization
          • Master of Music, Performance -​ Historical Performance Instruments specialization
          • Master of Music, Performance -​ Historical Performance Voice specialization
          • Master of Music, Performance -​ Jazz specialization
          • Master of Music, Performance -​ Orchestral Conducting specialization
          • Master of Music, Performance -​ Orchestral Instruments specialization
          • Master of Music, Performance -​ Organ specialization
          • Master of Music, Performance -​ Piano specialization
          • Master of Music, Performance -​ Wind Conducting specialization
          • Master of Music, Performance -​ Voice specialization
        • Master of Music: Academic Majors
          • Performance, Master of Music -​ Pedagogy emphasis
          • Music Education, Master of Music
          • Musicology, Master of Music
          • Music Theory Pedagogy, Master of Music
        • Master of Music: Low Residency
      • Master of Arts (MA)
        • Audio Sciences: Acoustics, Master of Arts
          • Five-​Year BM/​MA Program Requirements: Acoustics
        • Audio Sciences: Recording Arts and Sciences, Master of Arts
          • Five-​Year BM/​MA Program Requirements: Recording Arts
      • Doctor of Musical Arts (DMA)
        • Composition, Doctor of Musical Arts
        • Performance, Doctor of Musical Arts -​ Guitar specialization
        • Performance, Doctor of Musical Arts -​ Historical Performance Instruments specialization
        • Performance, Doctor of Musical Arts -​ Orchestral Conducting specialization
        • Performance, Doctor of Musical Arts -​ Orchestral Instruments specialization
        • Performance, Doctor of Musical Arts -​ Organ specialization
        • Performance, Doctor of Musical Arts -​ Piano specialization
        • Performance, Doctor of Musical Arts -​ Voice specialization
        • Performance, Doctor of Musical Arts -​ Wind Conducting specialization
      • Performer’s Certificate (PC)
        • Guitar, Performer's Certificate
        • Orchestral Instruments, Performer's Certificate
        • Organ, Performer's Certificate
        • Piano, Performer's Certificate
        • Voice, Performer's Certificate
      • Graduate Performance Diploma (GPD)
      • Artist’s Diploma (AD)
    • Extension Study
      • Music Education Certification -​ Instrumental
      • Music Education Certification -​ Vocal
  • Nitze School of Advanced International Studies
    • Degrees and Certificates
      • International Studies, Doctor of Philosophy
      • International Affairs, Doctor of
      • European Public Policy, Master of Arts
      • Global Policy, Master of Arts
      • Global Risk, Master of Arts (On-​site)
      • Global Risk, Master of Arts (Online)
      • International Affairs, Master of Arts
      • International Economics and Finance, Master of Arts
      • International Relations, Master of Arts
      • International Studies, Master of Arts
      • International Public Policy, Master of
      • Strategy, Cybersecurity, and Intelligence, Master of Arts
      • Sustainable Energy, Master of Arts (Online)
      • Chinese and American Studies, Hopkins-​Nanjing Center Certificate
      • Dual Degrees and Exchange Programs
      • Graduate Certificates
      • International Studies, Diploma
    • Policies and Resources
      • Academic Integrity
      • Academic Policies and Resources
      • Student Life
    • School Leadership and Key Contacts
  • School of Education
    • Academic and Student Policies
      • Academic and Student Conduct Policies
      • Academic Standards
      • Grading System and Academic Records
      • Grievances and Complaints
    • Admission
    • Graduation
    • Programs
      • Doctoral Programs
        • Education (Online), EdD
        • Education, PhD
      • Master's Programs
        • Counseling, Master of Science
        • Education, Master of Science
          • Education, Master of Science – Digital Age Learning and Educational Technology (Online)
          • Education, Master of Science -​ Educational Studies
          • Education, Master of Science -​ Gifted Education
          • Education, Master of Science -​ School Administration and Supervision
        • Education Policy, Master of Science
        • Health Professions (Online), Master of Education
        • Special Education, Master of Science
        • Teaching Professionals, Master of Education
      • Post Master's Certificates
        • Applied Behavior Analysis, Post–Master’s Certificate
        • Clinical Mental Health Counseling, Post–Master’s Certificate
        • Evidence-​Based Teaching in the Health Professions, Post–Master’s Certificate
      • Certificate of Advanced Graduate Study
        • Counseling, Certificate of Advanced Graduate Study
      • Graduate Certificates
        • Education of Students with Autism and Other Pervasive Developmental Disorders, Graduate Certificate
        • Educational Leadership for Independent Schools, Graduate Certificate
        • Gifted Education, Graduate Certificate
        • Leadership in Technology Integration (Online), Graduate Certificate
        • Mathematics/​STEM Instructional Leader (PreK-​6) (Online), Graduate Certificates
        • Mind, Brain and Teaching (Online), Graduate Certificate
        • School Administration and Supervision, Graduate Certificate
        • Urban Education, Graduate Certificate
    • Centers &​ Institutes
    • Scholarships
    • State Authorization of Distance Education (NC-​SARA)
  • School of Medicine
    • General Information
      • Conduct in Teacher/​Learner Relationships (Student Mistreatment Policy)
      • Lectureships and Visiting Professorships
      • Loan Funds
      • Medical Student Advising
      • Named Professorships
      • Office of Medical Student Affairs
      • Scholarships
      • Student Research Scholarships and Awards
      • Tuition
      • Tuition and Other Fees
      • Young Investigators’ Day
    • Policies
    • Graduate Programs
      • Anatomy Education, MS
      • Applied Health Sciences Informatics, MS
      • Biochemistry, Cellular and Molecular Biology, PhD
      • Biological Chemistry, PhD
      • Biomedical Engineering, PhD
      • Biophysics and Biophysical Chemistry, PhD/​Molecular Biophysics, PhD
      • Cellular and Molecular Medicine, PhD
      • Cellular and Molecular Physiology, PhD
      • Clinical Anaplastology, MS
      • Clinical Informatics, Post-​Baccalaureate Certificate
      • Cross-​Disciplinary Program in Biomedical Sciences, PhD
      • Functional Anatomy and Evolution, PhD
      • Health Sciences Informatics, PhD
      • Health Sciences Informatics–Research, MS
      • History of Medicine, MA (On-​site)
      • History of Medicine, MA (Online)
      • History of Medicine, PhD
      • History of Medicine, Post-​Baccalaureate Certificate (Online)
      • Human Genetics and Genomics, PhD
      • Immunology, PhD
      • Medical and Biological Illustration, MA
      • Medical Physics, MS
      • Neuroscience, PhD
      • Pathobiology, PhD
      • Pharmacology, PhD
    • Medical Program
      • Doctor of Medicine, MD
      • MD-​PhD, Combined Degree
      • Subject Areas
        • Anesthesiology and Critical Care Medicine
        • Biological Chemistry
        • Biomedical Engineering
        • Biophysics and Biophysical Chemistry
        • Cell Biology
        • Department of Genetic Medicine
        • Dermatology
        • Emergency Medicine
        • Epidemiology
        • Functional Anatomy and Evolution
        • Gynecology and Obstetrics
        • Health Sciences Informatics
        • History of Medicine
        • Medicine
        • Molecular and Comparative Pathobiology
        • Molecular Biology and Genetics
        • Multi-​Department Courses
        • Neurology
        • Neuroscience
        • Oncology
        • Ophthalmology
        • Pathology
        • Pediatrics
        • Pharmacology and Molecular Sciences
        • Physical Medicine and Rehabilitation
        • Physiology
        • Psychiatry and Behavioral Sciences
        • Public Health
        • Radiation Oncology and Molecular Radiation Sciences
        • Radiology and Radiological Science
        • Section of Surgical Sciences
    • Postdoctoral Fellows
  • School of Nursing
    • Admission
    • Advising
    • Certificates
      • Healthcare Organizational Leadership, Post-​Master’s Certificate
      • Nursing Education, Post-​Master's Certificate
      • Pediatric Acute Care Nurse Practitioner, Post-​Master's Certificate
      • Psychiatric Mental Health Nurse Practitioner, Post-​Master's Certificate
    • Doctoral Degrees
      • Doctor of Nursing Practice, Advanced Practice Track
        • Adult-​Gerontological Acute Care Nurse Practitioner, DNP Advanced Practice Track
        • Adult-​Gerontological Critical Care Clinical Nurse Specialist, DNP Advanced Practice Track
        • Adult-​Gerontological Health Clinical Nurse Specialist, DNP Advanced Practice Track
        • Adult-​Gerontological Primary Care Nurse Practitioner, DNP Advanced Practice Track
        • Family Primary Care Nurse Practitioner, DNP Advanced Practice Track
        • Nurse Anesthesia, DNP Advanced Practice Track
        • Pediatric Critical Care Clinical Nurse Specialist, DNP Advanced Practice Track
        • Pediatric Dual Primary/​Acute Care Nurse Practitioner, DNP Advanced Practice Track
        • Pediatric Primary Care Nurse Practitioner, DNP Advanced Practice Track
        • Psychiatric Mental Health Nurse Practitioner, DNP Advanced Practice Track
      • Doctor of Nursing Practice: Executive Track
      • Nursing, Doctor of Philosophy
      • Doctor of Nursing Practice (DNP): Advanced Practice Track/​Doctor of Philosophy in Nursing (PhD) Dual Degree
    • Dual Degrees
      • DNP Executive/​MBA Dual Degree
      • DNP Executive/​MPH Dual Degree
      • Healthcare Organizational Leadership, MSN/​MBA, Dual Degree
    • Financial Aid
    • Master's Degrees
      • Entry into Nursing, Master of Science in Nursing
      • Healthcare Organizational Leadership Track, Master of Science in Nursing
    • Online Prerequisites for Health Professions
    • Policies
      • Academic Integrity Policy
      • Academic Standards for Progression
      • Administrative Leave
      • Absence and Attendance Policy
      • Canvas and SON IT Help
      • Clinical Placements
      • Clinical Warnings
      • Complaint/​Grievance Policy
      • Compliance
      • Course Policies
      • Criminal Conduct/​Background Check Policies
      • Drug Testing Policy
      • Email Policy
      • Examination Policy
      • Grading Policy
      • Health Insurance for Students
      • Incomplete Coursework
      • Independent Study Policy
      • Leave of Absence
      • Letters of Recommendation
      • NCLEX
      • Non-​Degree-​Seeking Students
      • Notification of Missed Clinical Time
      • Pet Guidelines
      • Printing and Copying
      • Professional Attire Policy
      • Professional Ethics Policy
      • Registration Policies and Procedures
      • Religious Observance Attendance Policy
      • Social Media Guidelines
      • Student Code of Conduct
      • Technical Standards for Admission and Graduation
      • Transcripts and Enrollment Verifications
      • Transfer of Graduate Credit
      • Withdrawal Policy
    • Student Accounts
    • Tuition and Fees
  • Whiting School of Engineering
    • Full-​time, On-​campus Undergraduate and Graduate Programs (Homewood)
      • Zanvyl Krieger School of Arts and Sciences &​ Whiting School of Engineering Full-​Time, On-​Campus Undergraduate and Graduate Policies
      • Departments, Program Requirements, and Courses
        • Applied Mathematics and Statistics
          • Applied Mathematics and Statistics, Bachelor of Arts
          • Applied Mathematics and Statistics, Bachelor of Science
          • Applied Mathematics and Statistics, Master of Science in Engineering
          • Applied Mathematics and Statistics, Minor
          • Applied Mathematics and Statistics, PhD
          • Data Science, Master's Degree
          • Financial Mathematics, Master of Science in Engineering
        • Biomedical Engineering
          • Bioengineering Innovation and Design, Master of Science in Engineering
          • Biomedical Engineering, Bachelor of Arts
          • Biomedical Engineering, Bachelor of Science
          • Biomedical Engineering, Master of Science in Engineering
          • Biomedical Engineering, PhD through the School of Medicine
        • Center for Leadership Education
          • Accounting and Financial Management, Minor
          • Engineering Management, Master of Science
          • Global Innovation and Leadership Through Engineering, Master of Science
          • Leadership Studies, Minor
          • Marketing and Communications, Minor
          • Professional Communication Program
          • Professional Development Program
          • W.P. Carey Entrepreneurship and Management, Minor
        • Chemical and Biomolecular Engineering
          • Chemical and Biomolecular Engineering, Bachelor of Science
          • Chemical and Biomolecular Engineering, Master of Science in Engineering
          • Chemical and Biomolecular Engineering, PhD
        • Civil &​ Systems Engineering
          • Civil Engineering, Bachelor of Science
          • Civil Engineering, Master of Science in Engineering (MSE)
          • Civil Engineering, Minor
          • Civil and Systems Engineering, PhD
          • Systems Engineering, Bachelor of Science
          • Systems Engineering, Master of Science
          • Systems Engineering, Minor
        • Computational Medicine
          • Computational Medicine, Minor
        • Computer Science
          • Computer Science, Bachelor of Arts
          • Computer Science, Bachelor of Science
          • Computer Science, Master of Science in Engineering
          • Computer Science, Minor
          • Computer Science, PhD
        • Doctor of Engineering
          • Engineering, Doctor of Engineering
        • Electrical and Computer Engineering
          • Computer Engineering, Bachelor of Science
          • Electrical and Computer Engineering, Master of Science in Engineering
          • Electrical and Computer Engineering, PhD
          • Electrical Engineering, Bachelor of Science
          • Energy, Minor
        • Environmental Health and Engineering
          • Engineering for Sustainable Development, Minor
          • Environmental Engineering, Bachelor of Science
          • Environmental Engineering, Minor
          • Environmental Sciences, Minor
          • Geography and Environmental Engineering, Master of Arts
          • Geography and Environmental Engineering, Master of Science
          • Geography and Environmental Engineering, Master of Science in Engineering
          • Geography and Environmental Engineering, PhD
          • Occupational and Environmental Hygiene, Master of Science
        • General Engineering
          • General Engineering, Bachelor of Arts
        • Information Security Institute
          • Security Informatics, Master of Science
          • Security Informatics, Master of Science/​Applied Mathematics and Statistics, Master of Science in Engineering Dual Master's Program
          • Security Informatics, Master of Science/​Computer Science, Master of Science in Engineering Dual Master's Program
        • Materials Science and Engineering
          • Materials Science and Engineering, Bachelor of Science
          • Materials Science and Engineering, Master of Science in Engineering
          • Materials Science and Engineering, PhD
        • Mechanical Engineering
          • Engineering Mechanics, Bachelor of Science
          • Mechanical Engineering, Bachelor of Science
          • Mechanical Engineering, Master of Science in Engineering
          • Mechanical Engineering, PhD
        • NanoBioTechnology
        • Robotics and Computational Sensing
          • Computer Integrated Surgery, Minor
          • Robotics, Master of Science in Engineering
          • Robotics, Minor
      • Multi-​School Programs of Study
        • Business, Minor
        • Peabody-​Homewood Double Degree Program
        • Space Science and Engineering
    • Part-​Time, Online Graduate Programs (Engineering for Professionals)
      • Academic Policies
        • Academic Calendar
        • Academic Regulations
        • Registration Policies
        • Tuition and Fees
      • Admission Requirements
      • Applied and Computational Mathematics
        • Applied and Computational Mathematics, Graduate Certificate
        • Applied and Computational Mathematics, Master of Science
        • Applied and Computational Mathematics, Post-​Master’s Certificate
      • Applied Biomedical Engineering
        • Applied Biomedical Engineering, Graduate Certificate
        • Applied Biomedical Engineering, Master of Science
        • Applied Biomedical Engineering, Post-​Master’s Certificate
      • Applied Physics
        • Applied Physics, Master of Science
        • Applied Physics, Post-​Master’s Certificate
      • Artificial Intelligence
        • Artificial Intelligence, Graduate Certificate
        • Artificial Intelligence, Master of Science
      • Chemical and Biomolecular Engineering
        • Chemical and Biomolecular Engineering, Master of Chemical and Biomolecular Engineering
      • Civil Engineering
        • Civil Engineering, Graduate Certificate
        • Civil Engineering, Master of Civil Engineering
      • Computer Science
        • Computer Science, Graduate Certificate
        • Computer Science, Master of Science
        • Computer Science, Post-​Master’s Certificate
      • Cybersecurity
        • Cybersecurity, Graduate Certificate
        • Cybersecurity, Master of Science
        • Cybersecurity, Post-​Master’s Certificate
      • Data Science
        • Data Science, Graduate Certificate
        • Data Science, Master of Science
        • Data Science, Post-​Master’s Certificate
      • Electrical and Computer Engineering
        • Electrical and Computer Engineering, Graduate Certificate
        • Electrical and Computer Engineering, Master of Science
        • Electrical and Computer Engineering, Post-​Master’s Certificate
      • Engineering Management
        • Engineering Management, Graduate Certificate
        • Engineering Management, Master of Engineering Management
      • Environmental Engineering, Science, Management, and Sustainability Programs
        • Climate Change, Energy, and Environmental Sustainability, Graduate Certificate
        • Climate, Energy, and Environmental Sustainability, Master of Science
        • Environmental Engineering
          • Environmental Engineering, Graduate Certificate
          • Environmental Engineering, Master of Environmental Engineering
          • Environmental Engineering, Post-​Master’s Certificate
        • Environmental Engineering and Science
          • Environmental Engineering and Science, Graduate Certificate
          • Environmental Engineering and Science, Master of Science
          • Environmental Engineering and Science, Post-​Master’s Certificate
        • Environmental Planning and Management
          • Environmental Planning and Management, Graduate Certificate
          • Environmental Planning and Management, Master of Science
          • Environmental Planning and Management, Post-​Master’s Certificate
      • Financial Mathematics
        • Financial Mathematics, Master of Science
        • Financial Risk Management, Graduate Certificate
        • Quantitative Portfolio Management, Graduate Certificate
        • Securitization, Graduate Certificate
      • Healthcare Systems Engineering
        • Healthcare Systems Engineering, Master of Science
      • Industrial and Operations Engineering
        • Industrial and Operations Engineering, Master of Science
      • Information Systems Engineering
        • Information Systems Engineering, Graduate Certificate
        • Information Systems Engineering, Master of Science
        • Information Systems Engineering, Post-​Master’s Certificate
      • Materials Science and Engineering
        • Materials Science and Engineering, Master of Science
      • Mechanical Engineering
        • Mechanical Engineering, Master of Science
        • Mechanical Engineering, Post-​Master’s Certificate
      • Occupational and Environmental Hygiene
        • Occupational and Environmental Hygiene, Master of Science
      • Robotics and Autonomous Systems
        • Robotics and Autonomous Systems, Master of Science
      • Space Systems Engineering
        • Space Systems Engineering, Master of Science
        • Space Systems Engineering, Post-​Master's Certificate
      • Systems Engineering
        • Systems Engineering, Graduate Certificate
        • Systems Engineering, Master of Science
        • Systems Engineering, Master of Science in Engineering (ABET-​accredited)
        • Systems Engineering, Post-​Master’s Certificate
  • Zanvyl Krieger School of Arts and Sciences
    • Full-​time, On-​campus Undergraduate and Graduate Programs (Homewood)
      • Zanvyl Krieger School of Arts and Sciences &​ Whiting School of Engineering Full-​Time, On-​Campus Undergraduate and Graduate Policies
      • Departments, Program Requirements, and Courses
        • Anthropology
          • Anthropology, Bachelor of Arts
          • Anthropology, Minor
          • Anthropology, PhD
        • Archaeology
          • Archaeology, Bachelor of Arts
          • Archaeology, Minor
        • Behavioral Biology Program
          • Behavioral Biology, Bachelor of Arts
        • Bioethics
          • Bioethics, Minor
        • Biology
          • Biology, Bachelor of Arts
          • Biology, Bachelor of Arts/​Master of Science
          • Biology, PhD
          • Molecular &​ Cellular Biology, Bachelor of Science/​Master of Science
          • Molecular and Cellular Biology, Bachelor of Science
        • Biophysics
          • Biophysics, Bachelor of Arts
          • Biophysics, Fifth-​Year Master’s Degree
          • Biophysics, PhD -​ Jenkins Biophysics Program
          • Biophysics, PhD -​ Program in Molecular Biophysics
        • Center for Africana Studies
          • Africana Studies, Bachelor of Arts
          • Africana Studies, Minor
        • Center for Economy and Society
          • Moral and Political Economy, Bachelor of Arts
        • Center for Language Education
        • Chemical Biology
          • Chemical Biology, PhD
        • Chemistry
          • Chemistry, Bachelor of Science
          • Chemistry, PhD
        • Classics
          • Classics, Bachelor of Arts
          • Classics, Bachelor of Arts/​Master of Arts
          • Classics, Minor
          • Classics, PhD
        • Cognitive Science
          • Cognitive Science, Bachelor of Arts
          • Cognitive Science, Master of Arts
          • Cognitive Science, PhD
          • Linguistics, Minor
        • Comparative Thought and Literature
          • Humanistic Studies, PhD
        • Earth and Planetary Sciences
          • Earth and Planetary Sciences, PhD
          • Earth and Planetary Sciences, Bachelor of Arts
          • Earth and Planetary Sciences, Minor
          • Energy, Minor
          • Environmental Science, Bachelor of Science
          • Environmental Studies, Bachelor of Arts
          • Environmental Studies, Minor
        • East Asian Studies
          • East Asian Studies, Bachelor of Arts
          • East Asian Studies, Minor
        • Economics
          • Economics, Bachelor of Arts
          • Economics, Minor
          • Economics, PhD
          • Financial Economics, Minor
        • English
          • English, Bachelor of Arts
          • English, Minor
          • English, PhD
        • Film and Media Studies
          • Film and Media Studies, Bachelor of Arts
          • Film and Media Studies, Minor
        • History
          • History, Bachelor of Arts
          • History, Bachelor of Arts/​Master of Arts Four-​Year Program
          • History, Minor
          • History, PhD
        • History of Art
          • History of Art, Bachelor of Arts
          • History of Art, Minor
          • History of Art, PhD
          • History of Art, Bachelor of Arts/​Master of Arts
        • History of Science and Technology
          • History of Science and Technology, PhD
          • History of Science, Medicine and Technology, Minor
          • History of Science, Medicine, and Technology, Bachelor of Arts
        • Interdisciplinary Studies
          • Interdisciplinary Studies, Bachelor of Arts
        • International Studies
          • International Studies, Bachelor of Arts
          • International Studies B.A./​M.A. Program with Sciences Po
          • International Studies B.A./​M.A. Program with the Paul H. Nitze School of Advanced International Studies (SAIS)
        • Islamic Studies
          • Islamic Studies, Minor
        • Jewish Studies
          • Jewish Languages and Literatures, PhD
          • Jewish Studies, Minor
        • Latin American, Caribbean, and Latinx Studies (LACLxS)
          • Latin American, Caribbean, and Latinx Studies, Bachelor of Arts
          • Latin American, Caribbean, and Latinx Studies, Minor
        • Mathematics
          • Mathematics, Bachelor of Arts
          • Mathematics, Minor
          • Mathematics, Bachelor of Arts/​Master of Arts
          • Mathematics, PhD
        • Medicine, Science, and the Humanities
          • Medicine, Science, and the Humanities, Bachelor of Arts
        • Military Science
        • Modern Languages and Literatures
          • Film and Media Studies, Graduate Certificate
          • French, Bachelor of Arts
          • French, Minor
          • French, PhD
          • German Bachelor of Arts/​Master of Arts
          • German, Bachelor of Arts
          • German, Minor
          • German, PhD
          • Italian, Bachelor of Arts
          • Italian, Minor
          • Italian, PhD
          • Romance Languages, Bachelor of Arts
          • Spanish, Bachelor of Arts
          • Spanish for the Professions, Minor
          • Spanish Language and Hispanic Cultures, Minor
          • Spanish, PhD
        • Museums and Society
          • Museums and Society, Minor
        • Music
          • Music, Minor
        • Natural Sciences Area Major
          • Natural Sciences Area, Bachelor of Arts
        • Near Eastern Studies
          • Near Eastern Studies, Bachelor of Arts
          • Near Eastern Studies, Minor
          • Near Eastern Studies, PhD
        • Neuroscience
          • Neuroscience, Bachelor of Science
          • Neuroscience, Bachelor of Science/​Master of Science
        • Philosophy
          • Philosophy, Bachelor of Arts
          • Philosophy, Bachelor of Arts/​Master of Arts
          • Philosophy, Minor
          • Philosophy, PhD
        • Physics and Astronomy
          • Astronomy and Astrophysics, PhD
          • Physics, Bachelor of Arts
          • Physics, Bachelor of Science
          • Physics, Bachelor of Science/​Master of Science
          • Physics, Minor
          • Physics, PhD
        • Political Science
          • Political Science, Bachelor of Arts
          • Political Science, PhD
        • Psychological and Brain Sciences
          • Psychology, Bachelor of Arts
          • Psychology, Minor
          • Psychology, PhD
        • Public Health Studies
          • Public Health Studies, Bachelor of Arts
        • SNF Agora Institute
          • Civic Life, Minor
        • Sociology
          • Sociology, Bachelor of Arts
          • Sociology, PhD
          • Sociology, PhD/​Applied Mathematics and Statistics, MSE Joint Program
        • Space Science and Engineering
          • Space Science and Engineering, Minor
        • Study of Women, Gender, and Sexuality
          • Women, Gender, and Sexuality, Minor
        • Theatre Arts and Studies
          • Theatre Arts and Studies, Minor
        • Visual Arts
          • Visual Arts, Minor
        • Writing Seminars
          • Writing Seminars Minor
          • Writing Seminars, Bachelor of Arts
          • Writing Seminars, Master of Fine Arts
      • Multi-​School Programs of Study
    • Graduate and Professional Programs (Advanced Academic Programs)
      • About Krieger School of Arts and Sciences
      • Administration and Faculty
      • Admission
      • Alumni
      • Current Students
        • Academic Regulations for Online Courses
        • Academic Structure
        • Grades /​ Performance /​ Conduct
        • Graduation Requirements
        • Registration
        • Tuition and Fees
      • Programs
        • Applied Economics, Master of Science
          • Applied Economics, MS/​ Investment Certificate
          • Applied Economics, MS/​Financial Management Certificate
        • Applied Economics, MS/​MBA Dual Degree
        • Center for Data Analytics, Policy, and Government
          • Data Analytics and Policy, Master of Science
            • Data Analytics and Policy, MS/​Intelligence, Certificate
          • Data Analytics and Policy, Certificate
          • Geospatial Intelligence, Master of Science
          • Global Security Studies, Master of Arts
            • Global Security Studies, MA/​Intelligence, Certificate
          • Government, MA/​MBA
          • Government, Master of Arts
            • Government, MA/​Intelligence, Certificate
          • Intelligence Analysis, Master of Science
          • Intelligence, Certificate
          • Non-​Profit Management, Master of Arts
          • Non-​Profit Management, Certificate
          • Public Management, Master of Arts
            • Public Management, MA/​Data Analytics and Policy, Certificate
            • Public Management, MA/​Intelligence, Certificate
            • Public Management, MA/​Non-​Profit Management, Certificate
        • Center for Biotechnology Education
          • Bioinformatics, Master of Science
          • Biotechnology, Master of Science
          • Biotechnology, MS/​MBA
          • Biotechnology Education, Certificate
          • Biotechnology Enterprise, Certificate
          • Food Safety Regulation, Master of Science
          • Individualized Genomics and Health, Master of Science
          • Master of Biotechnology Enterprise and Entrepreneurship
          • Regenerative and Stem Cell Technologies, Master of Science
          • Regulatory Science, Master of Science
          • Sequence Analysis and Genomics, Post-​Master's Certificate
        • Communication, Master of Arts
          • Communication, Master of Arts/​MBA
          • Communication, Master of Arts/​Non-​Profit Management, Certificate
        • Cultural Heritage Management, Master of Arts
          • Cultural Heritage Management, MA/​Digital Curation, Certificate
          • Cultural Heritage Management, MA/​Non-​Profit Management, Certificate
        • Digital Curation, Certificate
        • Energy Policy and Climate, Master of Science
        • Environmental Sciences and Policy, Master of Science
          • Environmental Sciences and Policy, MS/​Geographic Information Systems, Certificate
        • Film and Media, Master of Arts
        • Financial Economics, Master of Science
        • Geographic Information Systems, Master of Science
          • Geographic Information Systems, Certificate
        • Master of Liberal Arts
        • Museum Studies, Master of Arts
          • Museum Studies, MA/​Digital Curation, Certificate
          • Museum Studies, MA/​Non-​Profit Management, Certificate
        • Organizational Leadership, Master of Science
        • Quantitative Methods in Applied Economics, Post-​Master’s Certificate
        • Research Administration, Master of Science
        • Science Writing, Master of Arts
          • Science Writing, Certificate
        • Teaching Writing, Master of Arts
          • Teaching Writing, Certificate
        • Writing, Master of Arts
  • Zanvyl Krieger School of Arts and Sciences &​ Whiting School of Engineering Full-​Time, On-​Campus Undergraduate and Graduate Policies
    • Graduate Policies
      • Academic Policies
      • Admissions and Finances
      • Graduate-​Specific Policies
      • Student Life
        • International Graduate Students
    • Undergraduate Policies
      • Academic Policies
        • Requirements for a Bachelor's Degree
        • Student Status
        • Registration Policies
        • Grading Policies
        • Academic Standing Policies
        • External Credit Policies
        • Study Abroad Policies
        • Graduation Policies
      • Student Life Policies
  • Course Descriptions
    • AS.001 (AS First Year Seminars)
    • AS.004 (AS University Writing Program)
    • AS.010 (History of Art)
    • AS.020 (Biology)
    • AS.030 (Chemistry)
    • AS.040 (Classics)
    • AS.050 (Cognitive Science)
    • AS.060 (English)
    • AS.061 (Film and Media Studies)
    • AS.070 (Anthropology)
    • AS.080 (Neuroscience)
    • AS.100 (History)
    • AS.110 (Mathematics)
    • AS.130-​134 (Near Eastern Studies)
    • AS.136 (Archaeology)
    • AS.140 (History of Science, Medicine, and Technology)
    • AS.145 (Medicine, Science and the Humanities)
    • AS.150 (Philosophy)
    • AS.171-​173 (Physics &​ Astronomy)
    • AS.180 (Economics)
    • AS.190-​191 (Political Science)
    • AS.192 (International Studies)
    • AS.194 (Islamic Studies)
    • AS.196 (Agora Institute)
    • AS.197 (Economy and Society)
    • AS.200 (Psychological &​ Brain Sciences)
    • AS.210-​217 (Modern Languages &​ Literatures)
    • AS.220 (Writing Seminars)
    • AS.225 (Theatre Arts &​ Studies)
    • AS.230 (Sociology)
    • AS.250 (Biophysics)
    • AS.270-​271 (Earth &​ Planetary Sciences)
    • AS.280 (Public Health Studies)
    • AS.290 (Behavioral Biology)
    • AS.300 (Comparative Thought and Literature)
    • AS.310 (East Asian Studies)
    • AS.360 (Interdepartmental)
    • AS.361 (Latin American, Caribbean, and Latinx Studies)
    • AS.362 (Center for Africana Studies)
    • AS.363 (Study of Women, Gender, &​ Sexuality)
    • AS.370/​373/​375/​377-​381 (Center for Language Education)
    • AS.371 (Art)
    • AS.374 (Military Science)
    • AS.376 (Music)
    • AS.389 (Program in Museums and Society)
    • AS.410 ( Biotechnology)
    • AS.420 ( Environmental Sciences)
    • AS.425 ( Energy Policy and Climate)
    • AS.430 ( Geographic Information Systems)
    • AS.440 ( Applied Economics)
    • AS.450 ( Liberal Arts)
    • AS.455 ( Film and Media)
    • AS.460 ( Museum Studies)
    • AS.465 ( Cultural Heritage Management)
    • AS.470 ( Government)
    • AS.472 ( Geospatial Intelligence)
    • AS.475 ( Research Administration)
    • AS.480 ( Communication)
    • AS.485 ( Organizational Leadership)
    • AS.490 ( Writing)
    • AS.491 ( Science Writing)
    • AS.492 ( Teaching Writing)
    • AS.492 (Non-​Departmental)
    • AS.999 (AAP)
    • BU.001 (Graduate Business)
    • BU.001 (MBA)
    • BU.120 (Management)
    • BU.132 (Real Estate)
    • BU.210 (Finance)
    • BU.300 (Information Systems)
    • BU.410 (Marketing)
    • BU.510 (Quantitative Methods)
    • BU.550 (Business of Health)
    • BU.610 (Operations Management)
    • ED (Education)
    • EN.500 (General Engineering)
    • EN.501 (EN First Year Seminars)
    • EN.510 (Materials Science &​ Engineering)
    • EN.515 (Materials Science and Engineering)
    • EN.520 (Electrical &​ Computer Engineering)
    • EN.525 (Electrical and Computer Engineering)
    • EN.530 (Mechanical Engineering)
    • EN.535 (Mechanical Engineering)
    • EN.540 (Chemical &​ Biomolecular Engineering)
    • EN.545 (Chemical and Biomolecular Engineering)
    • EN.553 (Applied Mathematics &​ Statistics)
    • EN.555 (Financial Mathematics)
    • EN.560 (Civil and Systems Engineering)
    • EN.565 (Civil Engineering)
    • EN.570 (Environmental Health and Engineering)
    • EN.575 (Environmental Engineering and Science)
    • EN.575 (Environmental Engineering)
    • EN.575 (Environmental Planning and Management)
    • EN.580 (Biomedical Engineering)
    • EN.585 (Applied Biomedical Engineering)
    • EN.595 (Engineering Management)
    • EN.601 (Computer Science)
    • EN.605 (Computer Science)
    • EN.615 (Applied Physics)
    • EN.620 (Robotics)
    • EN.625 (Applied and Computational Mathematics)
    • EN.635 (Information Systems Engineering)
    • EN.645 (Systems Engineering)
    • EN.650 (Information Security Institute)
    • EN.655 (Healthcare Systems Engineering)
    • EN.660-​663 (Center for Leadership Education)
    • EN.665 (Robotics and Autonomous Systems)
    • EN.670 (Institute for NanoBio Technology)
    • EN.675 (Space Systems Engineering)
    • EN.685 (Data Science)
    • EN.695 (Cybersecurity)
    • EN.700 (Doctor of Engineering)
    • EN.705 (Artificial Intelligence)
    • ME.100 (Biophsyics and Biophysical Chemistry)
    • ME.110 (Cell Biology)
    • ME.120 (Art as Applied to Medicine)
    • ME.130 (Functional Anatomy and Evolution)
    • ME.140 (Gynecology and Obstetrics)
    • ME.150 (The History of Medicine)
    • ME.200 (Neurology)
    • ME.210 (Biomedical Engineering)
    • ME.220 (Dermatology)
    • ME.250 (Medicine)
    • ME.250 (Health Sciences Informatics)
    • ME.260 (Molecular Biology and Genetics)
    • ME.280 (Ophthalmology)
    • ME.290 (Otolaryngology-​Head and Neck Surgery)
    • ME.300 (Pathology)
    • ME.320 (Pediatrics)
    • ME.330 (Pharmacology and Molecular Sciences)
    • ME.340 (Biological Chemistry)
    • ME.360 (Physiology)
    • ME.370 (Psychiatry and Behavioral Sciences)
    • ME.380 (Surgery)
    • ME.381 (Plastic and Reconstructive Surgery)
    • ME.390 (Neurological Surgery)
    • ME.400 (Orthopedic Surgery)
    • ME.420 (Radiology and Radiological Science)
    • ME.440 (Neuroscience)
    • ME.520 (Emergency Medicine)
    • ME.510 (Oncology Center)
    • ME.560 (Urology)
    • ME.570 (Anesthesiology and Critical Care Medicine)
    • ME.580 (Biomedical Engineering)
    • ME.600 (Health Sciences Informatics)
    • ME.680 (Molecular and Comparative Pathobiology)
    • ME.700 (Immunology)
    • ME.710 (Human Genetics)
    • ME.711 (Berman Bioethics Institute)
    • ME.716 (Physical Medicine and Rehabilitation)
    • ME.717 (Radiation Oncology and Molecular Radiation Sciences)
    • ME.800 (Interdepartmental)
    • NR (Nursing)
    • PH.120 (Biochemistry and Molecular Biology)
    • PH.140 (Biostatistics)
    • PH.220 (International Health)
    • PH.260 (Molecular Microbiology and Immunology)
    • PH.300 (Health Policy and Management)
    • PH.330 (Mental Health)
    • PH.340 (Epidemiology)
    • PH.380 (Population Family and Reproductive Health)
    • PH.390 (Clinical Investigation)
    • PH.410 (Health Behavior and Society)
    • PH.550 (Extradepartmental Studies)
    • PH.600 (MAS-​Office)
    • PH.700 (Berman Institute)
    • PY.010 (Studio Lessons)
    • PY.113 (Recitals)
    • PY.123 (General Studies)
    • PY.123 (Professional Studies)
    • PY.250 (Humanities -​ Language)
    • PY.260 (Humanities -​ Liberal Arts)
    • PY.310 (Composition)
    • PY.320 (New Media)
    • PY.330 (Conducting)
    • PY.350 (Computer Music)
    • PY.380 (Historical Performance)
    • PY.410 (Brass)
    • PY.415 (Percussion)
    • PY.420 (Harp)
    • PY.425 (Strings)
    • PY.430 (Woodwinds)
    • PY.450 (Ensemble Arts)
    • PY.450 (Piano/​Keyboard)
    • PY.460 (Organ)
    • PY.470 (Guitar)
    • PY.510 (Music Education)
    • PY.520 (Pedagogy)
    • PY.530 (Voice)
    • PY.540 (Opera)
    • PY.550 (Recording Arts and Sciences)
    • PY.570 (Jazz)
    • PY.610 (Musicology)
    • PY.710 (Music Theory)
    • PY.715 (Music Theory -​ ET/​SS)
    • PY.715 (Music Theory -​ Keyboard Studies)
    • PY.800 (Dance)
    • PY.910 (Ensembles -​ Large)
    • PY.950 (Ensembles -​ Small/​Chamber)
    • SA.100 (Core Courses)
    • SA.310 (International Economics)
    • SA.500 (Development, Climate and Sustainability)
    • SA.501 (Technology and Innovation)
    • SA.502 (Security, Strategy and Statecraft)
    • SA.503 (Governance, Politics and Society)
    • SA.510 (International Economics and Finance)
    • SA.550 (Africa)
    • SA.551 (The Americas)
    • SA.552 (Asia)
    • SA.553 (China)
    • SA.554 (Europe and Eurasia)
    • SA.555 (The Middle East)
    • SA.556 (The United States)
    • SA.620 (Global Policy)
    • SA.630/​635 (Global Risk)
    • SA.670 (Strategy, Cybersecurity and Intelligence)
    • SA.685 (Sustainable Energy -​ Online)
  • Course Search
    • /​course-​search/​api/​
  • Catalogue Contents
  • Catalogue Archives
  • Amendments
  • Home›
  • Zanvyl Krieger School of Arts and Sciences›
  • Full-time, On-campus Undergraduate and Graduate Programs (Homewood)›
  • Departments, Program Requirements, and Courses›
  • Biophysics
  • Overview
  • Programs
  • Courses

Department website: http://biophysics.jhu.edu/

The Department of Biophysics offers programs leading to the B.A., M.A., and Ph.D. degrees. Biophysics is appropriate for students who wish to develop and integrate their interests in the physical and biological sciences, and is an excellent major for students interested in medical school, for students interested in graduate studies in the molecular biosciences, and for students interested in positions in biotechnology and the pharmaceutical industry. The small class size and emphasis on classroom instruction by tenure track faculty provides a close-knit environment where undergraduate biophysics majors develop close and lasting relationships with their professors.

Research interests in the Department cover experimental and computational biophysics, with topics that address the function and biology of molecular and cellular structures, membrane organization, biomolecular energetics, and macromolecular physical chemistry. The emphasis on independent research in faculty labs bring undergraduate as well as graduate students in contact with biophysical scientists throughout the university. Regardless of their choice of research area, students are exposed to a wide range of problems of biological interest. For more information, and for the most up-to-date list of course offerings and requirements, consult the department web page.

Research Activities of Primary Faculty

Protein Engineering and Biophysics (Dr. Garcia-Moreno)

To understand how biological macromolecules work and to design and engineer new macromolecules, it is important to understand in detail the relationship between structure and energetics. We study this problem in our lab by analysis of the connection between structure, thermodynamic stability, and dynamics of proteins with a combination of computational and experimental methods. Our research depends heavily on the application of NMR spectroscopy, X-ray crystallography, and equilibrium thermodynamics. These experimental methods contribute the physical insight needed to develop computational methods for structure-based energy calculations, and generate the data required to benchmark these methods. We are focused on problems of protein electrostatics because electrostatic energy is the most useful metric for correlating structure with function in all the most important energy transduction processes in biological systems. We focus on the engineering of proteins with pH sensing.

Biophysics of RNA (Dr. Woodson)

The control of cell growth and type depends on the ability of RNA to fold into complex three-dimensional structures. RNA catalysts are good models for studying the physical principles of RNA folding, and the assembly of protein-RNA complexes such as the ribosome. Changes in RNA three-dimensional structure are monitored by fluorescence spectroscopy, “X-ray footprinting,” and neutron scattering. Bacterial and yeast expression systems are used to study intracellular folding of RNA.

Protein Folding and Design, Notch Signaling  (Dr. Barrick)

The folding of proteins into their complex native structures is critical for proper function in biological systems. This spontaneous process of self-assembly is directed by physical chemistry, although the rules are not understood. We use repeat-proteins, linear proteins with simple architectures, to dissect the energy distribution, sequence-stability relationships, and kinetic routes for folding. We are also using consensus sequence design to explore how sequence statistics represented in multiple sequence alignments can be used to engineer protein stability, structure, and function in globular proteins. In addition, we are studying the molecular mechanisms of Notch signaling, a eukaryotic transmembrane signal transduction pathway important for human development and disease. The transmission of information across the membranes of cells is essential for cell differentiation and homeostasis; signaling errors result in disease states including cancer. We are focusing on interactions between proteins involved in Notch signaling using modern biophysical methods. Thermodynamics of association and allosteric effects are determined by spectroscopic, ultracentrifugation, and calorimetric methods. Atomic structure information is being obtained by NMR spectroscopy.

NMR Spectroscopy (Dr. Lecomte)

Many proteins require stable association with an organic compound for proper functioning. One example of such “cofactor” is the heme group, a versatile iron-containing molecule capable of catalyzing a broad range of chemical reactions. The reactivity of the heme group is precisely controlled by interactions with contacting amino acids. Structural fluctuations within the protein are also essential to the fine-tuning of the chemistry. We are studying how the primary structure of cytochromes and hemoglobins codes for heme binding and the motions that facilitate function. Our method of choice is nuclear magnetic resonance spectroscopy, which we use to obtain detailed structural and dynamic representations of proteins with and without bound heme. Our ultimate goal is to understand the evolution of chemical properties in heme proteins and how to alter them.

Structural and Energetic Principles of Membrane Proteins (Dr. K. Fleming)

Membrane proteins must fold to unique native conformations and must interact in specific ways to form complexes essential for life. Currently, the chemical principles underlying these processes are poorly understood. Thermodynamic and kinetic studies on membrane proteins with diverse folds and oligomeric states are carried out with the goal of discovering the physical basis of stability and specificity for membrane proteins. Our research results in a quantitative understanding of sequence-structure-function relationships that can ultimately be used to describe membrane protein populations in both normal and disease states, to design novel membrane proteins, and to develop therapeutics that modulate membrane protein functions in desirable ways.

Chromatin Remodeling (Dr. Bowman)

Chromatin, the physical packaging of eukaryotic chromosomes, plays a major role in determining the patterns of gene silencing and expression across the genome. Chromatin remodelers are multicomponent protein machines that establish and maintain various chromatin environments through the assembly, movement, and eviction of nucleosomes. At present, the molecular mechanisms by which chromatin remodelers alter chromatin structure are not understood. Our long-term goal is to gain a molecular understanding of the remodeling process and in particular how remodeling is coupled to the transcriptional machinery. Our strategy is to couple structure determination with functional studies to determine how different components of a chromatin remodeler cooperate and interact with the nucleosome substrate.

Theoretical Biophysics (Dr. Johnson)

Protein interaction networks capture the cooperation required by proteins to carry out complex functions in the cell. The ability of proteins to assemble to form transient or permanent complexes and transmit signals or nutrients depends on their concentrations, their binding partners, and their spatial and temporal dynamics in the cell. Using computation and theory, we are building models to accurately simulate these multi-protein assembly processes, such as those occurring in endocytosis, that are critical to cell survival. We complement these detailed simulations with coarse-grained models to extend to larger protein interaction networks and characterize the role of network topology on protein binding specificity and dynamics.

Cellular Physics (Dr. Camley)

We work on the physics of cell biology, trying to understand how cells can respond to signals, crawl through complex environments, and work together to move and measure signals. We are also interested in the dynamics of subcellular processes like the cell membrane's motion and intracellular transport. These problems link the physics of soft, fluctuating materials to biological questions like how a white blood cell can find a wound. My group uses a wide range of computational and analytical methods to model organelles, cells, and tissues, ranging from stochastic hydrodynamics to phase field and reaction-diffusion modeling.

Biophysics Theory and Modeling (Dr. Zhang)

The interior of a cell is organized in both space and time by non- membrane bound compartments, many of which form via liquid- liquid phase separation. These phase-separated condensates play key roles in processes ranging from transcription to translation,
metabolism, signaling, and more. Unlike conventional phase separation, e.g., the demixing of oil and water, the underlying interactions that drive biomolecular phase separation are complex, typically involving both specific and non-specific interactions and often among multiple components. These interactions are regulated by the cell in ways that allow condensates to carry out specific biological functions, yet the complexity of these interactions poses challenges to understanding how the microscopic features of biomolecules lead to the macroscopic properties and functions of condensates. We utilize physical, mathematical, and computational tools and work closely with experimental groups to understand such emergent connections. In addition, we are broadly interested in the complex behaviors of biomolecules and their assemblies across scales, from RNA folding and DNA bending, to macromolecular transport through nuclear pore complexes and intracellular space, to genome organization.

Structure and Mechanism of How Cells Read and Repair the Genome (Dr. He)

We aim to elucidate the molecular mechanisms through which large, multi-subunit complexes engage in DNA-centric processes, utilizing cryo-electron microscopy (cryo-EM) alongside biophysical and biochemical methods. Our research centers on two main areas: the regulation of eukaryotic gene transcription at various stages, and the repair of different types of DNA damage, exploring how deficiencies in these pathways contribute to cancer predisposition or accelerated aging. Cryo-EM, with its ability to reveal macromolecular assembly structures at atomic resolution using minimal sample sizes, overcomes the challenges of system size and heterogeneity. Enhanced by ongoing technical developments, cryo-EM significantly advances our understanding of complex cellular processes.

Biochemical Reactions on Cell Membranes (Dr. Huang)

The cell membrane hosts a myriad of biochemical reactions critical to cellular functions. The coupling of reactions with a physical surface enables a rich array of unique mechanisms in space and time that are rarely encountered in solution biochemistry. We explore this theme in the case of signal transduction, the process by which chemical information is integrated in living cells. The research approach combines optical methods, including single-molecule imaging and spectroscopy, and kinetic modeling to analyze biochemically reconstituted systems and living cells. The natural integration between physical methods, biochemistry, and cell biology stimulates the invention of imaging assays that advance the degree to which complex signaling processes can be resolved in real time. With the advent of quantitative descriptions of signal transduction, the overarching goal is to formulate a physical understanding of biochemical reactions in living systems.

Facilities

The Department of Biophysics shares state-of-the-art equipment for X-ray diffraction analysis, NMR spectroscopy, solution biophysical studies, and numerically intensive computer simulations with other biophysics units and departments within the University. In addition, the department houses a full complement of equipment for molecular biological and biochemical work, and for various kinds of spectroscopy, calorimetry, and hydrodynamic studies.

Undergraduate Program

The undergraduate major in biophysics is intended for the student interested in advanced study of biophysics or the related fields of biochemistry, quantitative or computational biology, molecular biology, physiology, pharmacology, and neurobiology. The biophysics major fulfills all typical science premedical requirements with the exception of Organic Chemistry Lab (AS.030.225 Introductory Organic Chemistry Laboratory or AS.030.227 Chemical Chirality: An Introduction in Organic Chem. Lab, Techniques). The student majoring in biophysics, with the advice of a member of the department, chooses a program of study that will include foundation courses in biology, chemistry, and physics followed by advanced studies in biophysics, and independent research. The biophysics major requires that students earn a grade of “C” or greater for all courses required in the major. A student who earns a grade of “C-“ or below must repeat the course and earn a better grade.

For additional information on academic requirements and department events for majors, check the undergraduate website.

Doctoral Programs

The Thomas C. Jenkins Department of Biophysics trains students in two Ph.D. programs, the Jenkins Biophysics Program and the Program in Molecular Biophysics. The annual application deadline for both programs is typically December 1.

Financial Aid

Two National Institutes of Health training grants currently provide stipend and tuition support: one is for students who enroll in PMB and the other is for those who enter CMDB. Students supported by these training grants must be U.S. citizens or permanent residents. In addition, several research assistantships funded by grants and contracts awarded to faculty by outside agencies may be available to qualified students.

University fellowships providing remission of tuition are also available. Graduate students in biophysics are eligible for and encouraged to apply for various nationally administered fellowships, such as National Science Foundation fellowships.

The Jenkins graduate program is open to all students including international students. Students in this program are supported, in part, through TA-ships.

It is anticipated that financial support covering normal living costs and tuition will be made available to accepted students.

Programs

  • Biophysics, Bachelor of Arts
  • Biophysics, Fifth-Year Master’s Degree
  • Biophysics, PhD - Jenkins Biophysics Program
  • Biophysics, PhD - Program in Molecular Biophysics

For current course information and registration go to https://sis.jhu.edu/classes/

On This Page
  • Courses
    • Cross-Listed Courses
      • Biology
      • Civil and Systems Engineering
      • First Year Seminars
      • Physics & Astronomy

Courses

AS.250.105.  Science and Film.  2 Credits.  

From the origins of cinema to the present, science and technology have remained the most reliably popular subjects for filmmakers and audiences alike. This course will address that enduring fascination, exploring the meanings and uses of science and technology in film through guest lectures and discussion of cinematic examples both recent and historic. Lectures and discussion will focus on a range of questions: How does film both reflect and shape our understanding of scientific concepts and technologies, from artificial intelligence to genetic engineering? How does science fiction reveal contemporary cultural anxieties and address ethical questions? How “fictional” is the science in science fiction film, and how have science fiction films inspired science and technology? What can we learn about “real” science from the movies? In addition to exploring science through film, students will learn the tools of film analysis through lecture, close viewing, and completion of a series of short written responses. In lieu of a short written response, student may choose to work in a team to create a short (1-3 minute) video response. Possible scientific topics: Genetics and Bioethics, Psychological and Brain Sciences, Artificial Intelligence and Robotics, Climate Change and Public Health and Astrophysical and Planetary Sciences. Possible films to be discussed: 2001: A Space Odyssey, Eternal Sunshine of the Spotless Mind, Blade Runner, GATTACA, The Martian, Interstellar, WALL-E, Children of Men and more. Attendance at weekly screenings at the Parkway Theater is required.

AS Foundational Abilities: Science and Data (FA2), Culture and Aesthetics (FA3)

AS.250.205.  Introduction to Computing.  3 Credits.  

This course is useful for many disciplines not only the life sciences. It will introduce students to basic computing concepts and tools useful in many applications. Students will learn to work in the Unix environment, and write bash shells scripts.They will learn to program using the Python programming language, including Python libraries for graphing, fitting and for numerical and statistical computing, such as NumPy, SciPy, and Matplotlib.At the end of the semester, students will complete a project coupling all components of the semester together. Brief lectures followed by extensive hands-on computer laboratories with examples from many disciplines. No prerequisites. Course offered every semester.

Prerequisite(s): You cannot take AS.250.205 if you have already taken AS.250.206.

Distribution Area: Natural Sciences, Quantitative and Mathematical Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.250.253.  Protein Engineering and Biochemistry Lab.  3 Credits.  

This laboratory examines the relationship between genes and proteins in the context of disease and evolution. It is a research project lab in which the structural and functional consequences of mutations are determined for a model protein. Students will learn basic protein science and standard biochemical techniques and methods in protein engineering. They will perform experiments in site-directed mutagenesis, protein purification, and structural, functional and physical characterization of proteins. No prerequisites. Courses offered in Fall and Spring semesters.

Prerequisite(s): You cannot take AS.250.253 if you have already taken AS.250.254.;Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.

Distribution Area: Natural Sciences

AS Foundational Abilities: Writing and Communication (FA1), Ethics and Foundations (FA5), Projects and Methods (FA6)

Writing Intensive

AS.250.302.  Modeling the Living Cell.  4 Credits.  

Previously titled "Models and Algorithms in Biophysics." Introduction to physical and mathematical models used to represent biophysical systems and phenomena. Students will learnalgorithms for implementing models computationally and perform basic implementations. We will discuss the types of approximations made to develop useful models of complex biological systems, and the comparison of model predictions with experiment.

Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.

Distribution Area: Engineering, Natural Sciences

AS Foundational Abilities: Science and Data (FA2), Projects and Methods (FA6)

AS.250.310.  Exploring Protein Biophysics using Nuclear Magnetic Resonance (NMR) Spectroscopy.  3 Credits.  

NMR is a spectroscopic technique which provides unique, atomic level insights into the inner workings of biomolecules in aqueous solution and solid state. A wide variety of biophysical properties can be studied by solution state NMR, such as the three dimensional structures of biological macromolecules, their dynamical properties in solution, interactions with other molecules and their physical and chemical properties which modulate structure-function relationships (such electrostatics and redox chemistry). NMR exploits the exquisite sensitivity of magnetic properties of atomic nuclei to their local electronic (and therefore, chemical) environment. As a result, biophysical properties can be studied at atomic resolution, and the global properties of a molecule can be deconstructed in terms of detailed, atomic level information. In addition, interactions between nuclei can be exploited to enhance the information content of NMR spectra via multidimensional (2D and 3D) spectroscopy. Since these properties can be studied in solution, NMR methods serve as an effective complement to X-Ray crystallography and electron microscopy. In this course, we will learn about the basics of NMR spectroscopy, acquire 1D and 2D NMR spectra and use various NMR experiments to characterize and probe biophysical properties of proteins at an atomic level.

Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.;((AS.030.101 AND AS.030.105) OR (AS.030.103 OR AS.030.204)) AND (AS.030.370 OR AS.250.372) AND (AS.020.305 OR AS.030.315 OR AS.250.315) AND AS.030.205 or permission of the instructor.

AS Foundational Abilities: Science and Data (FA2)

AS.250.315.  Biochemistry I.  3 Credits.  

Foundation for advanced classes in Biophysics and other quantitative biological disciplines. This class is the first semester of a two semester course in biochemistry. Topics in Biochemistry I include chemical and physical properties of biomolecules and energetic principles of catabolic pathways.

Prerequisite(s): If you have completed AS.250.307 you may not register for AS.250.315.;Students must have completed the following courses to enroll in AS.250.315: AS.030.206 OR AS.030.212

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.250.316.  Biochemistry II.  3 Credits.  

Biochemical anabolism, nucleic acid structure, molecular basis of transcription, translation and regulation, signal transduction with an emphasis on physical concepts and chemical mechanisms. Format will include lectures and class discussion of readings from the literature.

Prerequisite(s): Students who have taken AS.030.316 are not eligible to take AS.250.316.;( AS.250.315 OR AS.030.315 OR AS.020.305 ) AND ( AS.030.206 OR AS.030.212 ) or permission of the instructor.

AS Foundational Abilities: Science and Data (FA2)

AS.250.335.  Single Molecule & Cell Biophysics.  3 Credits.  

This (elective) course offers an introduction to the field of single molecule and single cell biophysics to second and third year undergraduate students in biophysics. We will examine technologies such as single molecule fluorescence, force measurements and single cell fluorescence detections that enable high precision molecular visualizations in vitro and in cells. In addition, we will cover topics of genome engineering, cell mechanics and optogenetics toward the end of the semester. Each student is expected to read two articles assigned for each week and submit a written summary. All students will take turns presenting the assigned articles to class.

AS.250.351.  Reproductive Physiology.  2 Credits.  

Focuses on reproductive physiology and biochemical and molecular regulation of the female and male reproductive tracts. Topics include the hypothalamus and pituitary, peptide and steroid hormone action, epididymis and male accessory sex organs, female reproductive tract, menstrual cycle, ovulation and gamete transport, fertilization and fertility enhancement, sexually transmitted diseases, and male and female contraceptive methods. Introductory lectures on each topic followed by research-oriented lectures and readings from current literature.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2), Projects and Methods (FA6)

AS.250.372.  Biophysical Chemistry.  4 Credits.  

Course covers classical and statistical thermodynamics, spanning from simple to complex systems. Major topics include the first and second law, gases, liquids, chemical mixtures and reactions, partition functions, conformational transitions in peptides and proteins, ligand binding, and allostery. Methods for thermodynamic analysis will be discussed, including calorimetry and spectroscopy. Students will develop and apply different thermodynamic potentials, learn about different types of ensembles and partition functions. Students will learn to use Pythonand will use it for data fitting and for statistical and mathematical analysis. Background: Calculus and Introductory Physics.

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.250.381.  Spectroscopy and Its Application in Biophysical Reactions.  3 Credits.  

Continues Biophysical Chemistry (AS.250.372). Fundamentals of quantum mechanics underlying various spectroscopies (absorbance, circular dichroism, fluorescence, NMR); application to characterization of enzymes and nucleic acids.

Prerequisite(s): AS.250.372

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.250.383.  Molecular Biophysics Laboratory.  3 Credits.  

An advanced inquiry based laboratory course covering experimental biophysical techniques to introduce fundamental physical principles governing the structure/function relationship of biological macromolecules. Students will investigate a “model protein”, staphylococcal nuclease, the “hydrogen atom” of biophysics. Using a vast library of variants, the effect of small changes in protein sequence will be explored. A variety of techniques will be used to probe the equilibrium thermodynamics and kinetic properties of this system; chromatography, spectroscopy (UV-Vis, fluorescence, circular dichroism, nuclear magnetic resonance), calorimetry, analytical centrifugation, X-ray crystallography, mass spectroscopy, and computational methods as needed for analysis. These methods coupled with perturbations to the molecular environment (ligands, co-solvents, and temperature) will help to elucidate protein function. Prerequisite: Introduction to Scientific Computing (250.205) or equivalent. Biophysical Chemistry (250.372 or 020.370) or equivalent. Course taught in Fall and Spring.

Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.;(AS.250.372 OR AS.030.370) AND AS.250.205

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2)

Writing Intensive

AS.250.403.  Advanced Seminar in Bioenergetics.  3 Credits.  

The trait shared by all living systems is the capacity to perform energy transduction. This biophysics/biochemistry course examines the physico-chemical and structural basis of biological energy transduction. Emphasis is on understanding the molecular and cellular logic of the flow of energy in living systems. The course explores the connection between fundamental physical requirements for energy transduction and the organization, evolution and possibly even the origins of biological molecules, cells, and organisms. Implications for planet earth¹s energy balance and for the design of synthetic organisms and of artificial energy transducing machines will be discussed, time permitting. Recommended Course Background: One semester of Biochemistry. Recommended Course Background: One semester of Biochemistry

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2)

Writing Intensive

AS.250.405.  Systems Genome Biology.  3 Credits.  

Systems Genome Biology uses predictive mathematical models to describe the physical principles behind biological function in the cell’s genome, including the nucleus and cellular and nuclear organelles, the chromatin and its folding structures, biomolecular complexes, and the individual molecules. Students will learn our current understanding at the systems level of biomolecular condensates, how omics data is analyzed and how it is used to understand cellular regulation and cell fate transitions, how epigenetics is coded in the genome, how DNA repairs its damages, and how all these phenomena are altered in cancer and neurodegenerative diseases as well as in rare diseases. The course will include guest lectures by leading scientists in these areas.

Prerequisite(s): AS.250.372 AND AS.250.302

Distribution Area: Natural Sciences

AS Foundational Abilities: Science and Data (FA2)

AS.250.410.  Genome Maintenance and Genome Engineering.  3 Credits.  

Advanced seminar for biophysics undergraduates. We focus on topics of genome maintenance via telomere regulation and genome engineering by CRISPR-Cas systems. The course will have lecture, scientific article reading, small and large group discussion.

AS.250.411.  Advanced Seminar in Structural Biology of Chromatin.  3 Credits.  

Focus is on structural and physical aspects of DNA processes in cells, such as nucleosomal packaging, DNA helicases, RNA polymerase, and RNA inhibition machinery. Topics are meant to illustrate how the structural and chemical aspects of how proteins and nucleic acids are studied to understand current biological questions. Recommended Course Background: Biochemistry I (AS.250.315) and Biochemistry II (AS.250.316) or Biochemistry (AS.020.305) and Intro to Biophys Chem (AS.250.372)

Distribution Area: Natural Sciences

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2)

Writing Intensive

AS.250.420.  Advanced Seminar in Macromolecular Binding.  3 Credits.  

All biological processes require the interactions of macromolecules with each other or with ligands that activate or inhibit their activities in a controlled manner. This is a literature and skills-based course that will discuss theoretical principles, logic, approaches and practical considerations used to study these binding processes from a quantitative perspective. Topics will include thermodynamics, single and multiple binding equilibria, linkage relationships, cooperativity, allostery, and macromolecular assembly. Some biophysical methods used in the study of binding reactions will be discussed. Simulation and analysis of binding scenarios will be used to analyze illustrate binding schemes, and examples from the scientific literature will be reviewed and discussed. Basic working knowledge of Python is helpful. The writing component will be in one of the common formats employed in the professional biophysics field.Recommended Course Background: AS.250.372 Biophysical Chemistry

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2)

Writing Intensive

AS.250.421.  Advanced Seminar in Membrane Protein Structure, Function & Pharmacology.  3 Credits.  

Topics are meant to illustrate the physical basis of membranes and membrane proteins towards understanding their functions and pharmacological importance including aspects of drug design as it relates to membranes. Contemporary issues in the field will be covered using primary literature articles, structural manipulations in pymol, and computational binding simulations.Recommended Course Background: AS.030.205, AS.250.307, and AS.250.372

AS Foundational Abilities: Writing and Communication (FA1), Science and Data (FA2)

Writing Intensive

AS.250.520.  Introduction to Biophysics Research.  2 Credits.  

This course is 3 credits and is taken S/U (i.e. it does not get letter grades). The course will be offered in Fall, Spring and Summer, with the same number. It is repeatable, so you can take it twice, even in the same year. Students are expected to take this course twice (2 semesters, 6 units) to satisfy the research requirement of the Biophysics major.

Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration, Online Forms.

AS Foundational Abilities: Science and Data (FA2), Projects and Methods (FA6)

AS.250.521.  Research in Biophysics.  3 Credits.  

This course is for Biophysics students who have already satisfied their the research requirement by having taken 2 semesters (6 units) of AS.250.520 - Introduction to Biophysics Research. Students who decide to continue doing research can do so by enrolling in this course. The course is 3 credits and is graded. This course will be offered in Fall, Spring and Summer, with the same number, and is repeatable.

Prerequisite(s): You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration, Online Forms.;In order to register for this course, you must first take TWO semesters of AS.250.520 - Introduction to Biophysics Research

AS Foundational Abilities: Science and Data (FA2), Projects and Methods (FA6)

AS.250.601.  Biophysics Seminar.  1 Credit.  

Graduate students only. Students and invited speakers present current topics in the field.

AS.250.610.  Savvy Science Seminars I.  1 Credit.  

Oral presentations are one of the main forms by which scientists communicate their results. Whether in the context of the classroom, the relatively informal lab meeting or as an invited speaker at an international colloquium, the ability to effectively present scientific results is an important skill to master. This course will cover the planning and execution steps necessary to produce an engaging oral presentation. Students will learn to articulate the big biological questions, tell a story that stimulates interest in their chosen subject, and effectively convey their experimental findings. Key methodological steps in planning will guide students on how to create slides with compelling visuals, and how to use technology to their advantage. Students will each prepare, present, and receive feedback on a 15-minute talk on their thesis project in the style of the Biophysical Society short talks. In addition, each student will receive and evaluate a video of their presentation so they can see themselves through the eyes of others.

AS.250.611.  Savvy Science Seminars II.  1 Credit.  

Oral presentations are one of the main forms by which scientists communicate their results. Whether in the context of the classroom, the relatively informal lab meeting or as an invited speaker at an international colloquium, the ability to effectively present scientific results is an important skill to master. This course will cover the planning and execution steps necessary to produce an engaging oral presentation. Students will learn to articulate the big biological questions, tell a story that stimulates interest in their chosen subject, and effectively convey their experimental findings. Key methodological steps in planning will guide students on how to create slides with compelling visuals, and how to use technology to their advantage. Students will each prepare, present, and receive feedback on a 15-minute talk on their thesis project in the style of the Biophysical Society short talks. In addition, each student will receive and evaluate a video of their presentation so they can see themselves through the eyes of others.

Prerequisite(s): AS.250.610

AS.250.615.  Biophysics Writing Workshop.  1 Credit.  

A series of writing workshops designed to help Biophysics Graduate Students develop a proposal of thesis work. Each student will write a specific aims page and a full (6 page) proposal.

AS.250.620.  Optical Spectroscopy.  2 Credits.  

Basics of absorbance, CD, and fluorescence spectroscopy; calorimetric methods.

AS.250.621.  Cryo-EM Module.  1 Credit.  

In this module students will learn the basic theory behind Cryo-EM, including sample preparation, data collection, data processing, and map/model interpretation with an emphasis on hands on experience. As such, students will collect data on a JHU electron microscope, process this data themselves and perform several exercises interpreting maps and building models.

AS.250.622.  Statistics and Data Analysis.  1 Credit.  

Basics of statistics and data analysis

AS.250.623.  Macromolecular Simulation.  1 Credit.  

Basics of molecular dynamics

AS.250.624.  NMR Spectroscopy.  1 Credit.  

Basics of NMR spectroscopy

AS.250.625.  Single Molecule Measurements.  1 Credit.  

Basic Principles of Single Molecule Measurements

Prerequisite(s): Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.

AS.250.640.  How to be an Effective STEM JEDI.  1 Credit.  

Students will read, review, and discuss the social psychology literature on bias in science practices. Topics to be discussed include gender and racial biases in faculty and students, imposter syndrome, how stereotypes influence the demographics of scientists, consequences of emotion in the workplace, bystander intervention skills, and the importance of diversity and inclusion. Students will complete a capstone project in the area of improving graduate climate in the STEM fields.

Distribution Area: Social and Behavioral Sciences

AS.250.649.  Introduction to Computing in Biology.  2 Credits.  

In this four week, intensive introductory course, students will gain a practical working knowledge of UNIX and Python programming languages and packages for analyzing data from biochemical and biophysical experiments. Brief daily lectures are followed by extensive hands-on experience in the computer laboratory.

AS.250.685.  Proteins & Nucleic Acids.  3 Credits.  

The structure of proteins, DNA and RNA, and their functions in living systems. Students are required to participate in class discussions based on readings from the primary scientific literature. Co-requisite: AS 250.649 Introduction to Computing in Biology. Instructor permission for undergraduates.

Prerequisite(s): Prerequisite: AS.250.649,may be taken concurrently.

AS.250.689.  Physical Chemistry of Biological Macromolecules.  3 Credits.  

Introduction to the principles of thermodynamics and kinetics as applied to the study of the relationship between structure, energy dynamics, and biological function of proteins and nucleic acids. Topics include of classical, chemical, and statistical thermodynamics, kinetics, theory of ligand binding, and conformational equilibria.

AS.250.801.  Dissertation Research.  9 - 20 Credits.  

This course is used for PhD Students conducting research with a Principal Investigator (PI) who has an appointment with the Jenkins or PMB Program. Research is conducted under the supervision of this faculty member and often in conjunction with other members of the research group.

AS.250.803.  Summer Dissertation Research.  9 Credits.  

Graduate Independent Academic Work

AS.250.820.  Laboratory Rotation.  3 Credits.  

A full emersion into a potential thesis lab. By the end of the rotation period, students should expect to understand the primary questions and techniques used in the lab and have gained some expertise in acquiring and analyzing data. At the end of the rotation period, students give a 10 min rotation talk to the biophysics community.

AS.250.821.  Teaching Assistantship.  3 Credits.  

As TAs, students provide key support by helping students with course concepts and techniques, holding office hours, and grading assignments.

Cross-Listed Courses

Biology

AS.020.674.  Quantitative Biology and Biophysics.  4 Credits.  

Students will be given instruction in the concepts of physical and quantitative biology. Students will learn to simulate biological processes, identify the relationship between data and models, and will learn to fit biological data. Note: Friday classes will be held in UTL 398.

Civil and Systems Engineering

EN.560.461.  Future Food Manufacturing.  3 Credits.  

Future Food Manufacturing will cover the engineering principles, motivations, and scientific obstacles behind foods that are to replace traditionally animal-derived ingredients such as meat and dairy. Concepts include 3D printing and extrusion of plant-based proteins, biophysics of proteins and fats, fermentation of genetically engineered microbes, and tissue engineering in cultured meat applications. This interdisciplinary course will consist of guest lecturers from multiple departments to encompass the multiple manufacturing angles by which to ensure food security in decades to come. This class will have no exams, instead students will be connected to existing alt protein companies and they will propose solutions for a major pain point in their manufacturing process.

Distribution Area: Engineering

AS Foundational Abilities: Science and Data (FA2)

First Year Seminars

AS.001.119.  FYS: The Nature of Nature.  3 Credits.  

How well do we understand the natural world? Are there common principles that can explain everything about it? What remains to be understood? Do we understand our past well enough to predict our future? Can I really take this seminar even if I don’t have a background in science or math? Yes you can! In this seminar we are going to emulate the Greeks, who without the benefit of the technological and mathematical armamentarium available today, driven simply by curiosity and their imagination, identified some of the fundamental questions that still puzzle us today. In the process they laid the foundation for modern science. Many of their insights have stood the test of time. We will examine the nature of nature by asking deep questions about the world around us and by examining phenomena we experience in our daily lives. We’ll try to identify continuity and connectivity between aspects of nature that are usually treated separately. Perhaps you’ll discover that science and religion, and scientific and humanistic inquiry, are more similar than you might think. Our seminar is organized around weekly conversations informed by all manner of sources: popular science writing, newspaper articles, fiction, poetry, and film. We will even do simple experiments in my lab (no lab or science experience necessary) to illustrate the logic of life.

AS.001.220.  FYS: Reproduction in the 21st Century: Biology and Politics.  3 Credits.  

This First-Year Seminar course will explore how 21st century childbearing conditions have changed, and the relationship of politics to these changes. Among the topics to be discussed are the impact on male and female infertility of assisted reproductive technologies that promote birth, including in vitro fertilization and intracytoplasmic sperm injection. But beyond how these technologies function, such topics as how decisions are/should be made about issues such as the acceptability of using genetic material from someone other than the hopeful parents to aid couples in having children will be addressed. Also to be discussed are how genetic technologies can be used to modify sperm, eggs and embryos, including risks, benefits, ethics and politics, and how, when and whether stem cells obtained from in vitro fertilization “leftovers” can be used. The ways in which these new approaches are perceived by the general public and by politicians, and how these perceptions affect the use of the new approaches, will be explored. Topics also will include whether abortions should be disallowed, allowed only under specific circumstances such as fetal anomalies observed during prenatal screening, or available as a women’s (or couple’s) right to choose. Contraception, both female and male, also will be explored. Thus, in addition to the science, this course will focus on when and how decisions are made regarding issues related to childbearing, including the roles of politics and social media.

Physics & Astronomy

AS.171.648.  Physics of Cell Biology: From Mechanics to Information.  3 Credits.  

Cells are actively-driven soft materials – but also efficient sensors and information processors. This course will cover the physics of those cellular functions, from the mechanics of DNA to the sensing of chemical signals. Questions answered include: How does polymer physics limit how quickly chromosomes move? Why do cells use long, thin flagella to swim? What limits the accuracy of a cell’s chemotaxis?Some experience with partial differential equations required. No biology knowledge beyond the high school level necessary. Some problem sets will require minimal programming.

Distribution Area: Natural Sciences

Johns Hopkins University
  • Johns Hopkins University
  • Baltimore, MD
  • 410-516-8000
  • © 2019 Johns Hopkins University. All rights reserved.
  • About Us
  • Academics
  • Schools & Divisions
  • Admissions & Aid
  • Research & Faculty
  • Campus Life
Back to top

Print Options

  • Send Page to Printer

    Print this page.

  • Download Page (PDF)

    The PDF will include all information unique to this page.

  • Download PDF of the entire 2024-2025 Catalogue

    All pages in the 2024-2025 catalogue.